Zeitreihenanalyse mit Machine Learning
Startdaten und Startorte
computer Online: Zoom 18. Aug 2025 bis 20. Aug 2025 |
computer Online: Zoom 10. Nov 2025 bis 12. Nov 2025 |
placeKöln 12. Jan 2026 bis 14. Jan 2026 |
computer Online: Zoom 12. Jan 2026 bis 14. Jan 2026 |
placeKöln 27. Apr 2026 bis 29. Apr 2026 |
computer Online: Zoom 27. Apr 2026 bis 29. Apr 2026 |
placeKöln 27. Jul 2026 bis 29. Jul 2026 |
computer Online: Zoom 27. Jul 2026 bis 29. Jul 2026 |
placeKöln 9. Nov 2026 bis 11. Nov 2026 |
computer Online: Zoom 9. Nov 2026 bis 11. Nov 2026 |
Beschreibung
Schulungen der Extraklasse ✔ Durchführungsgarantie ✔ Trainer aus der Praxis ✔ Kostenfreies Storno ✔ 3=2 Kostenfreie Teilnahme für den Dritten ✔ Persönliche Lernumgebung ✔ Kleine Lerngruppen
Seminarziel
Das Seminarziel für Unternehmen besteht darin, ihren Mitarbeitern Kenntnisse und Fähigkeiten in der Anwendung von Machine Learning-Techniken zur Zeitreihenanalyse zu vermitteln. Durch die Schulung sollen die Teilnehmer in der Lage sein, Zeitreihendaten effektiv zu analysieren, präzise Prognosen zu erstellen und fundierte Entscheidungen auf Basis dieser Vorhersagen zu treffen. Das Seminar zielt darauf ab, die Effizienz und Produktivität des Unternehmens zu steigern, Kosten zu reduzieren, die Kundenzufriedenheit zu verbessern und einen Wettbewerbsvorteil zu erlangen.Inhalt
-
Grundlagen der Zeitreihenanalyse:
- Definition von Zeitreihen und deren Anwendungsgebiete
- Charakteri…
Frequently asked questions
Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!
Schulungen der Extraklasse ✔ Durchführungsgarantie ✔ Trainer aus der Praxis ✔ Kostenfreies Storno ✔ 3=2 Kostenfreie Teilnahme für den Dritten ✔ Persönliche Lernumgebung ✔ Kleine Lerngruppen
Seminarziel
Das Seminarziel für Unternehmen besteht darin, ihren Mitarbeitern Kenntnisse und Fähigkeiten in der Anwendung von Machine Learning-Techniken zur Zeitreihenanalyse zu vermitteln. Durch die Schulung sollen die Teilnehmer in der Lage sein, Zeitreihendaten effektiv zu analysieren, präzise Prognosen zu erstellen und fundierte Entscheidungen auf Basis dieser Vorhersagen zu treffen. Das Seminar zielt darauf ab, die Effizienz und Produktivität des Unternehmens zu steigern, Kosten zu reduzieren, die Kundenzufriedenheit zu verbessern und einen Wettbewerbsvorteil zu erlangen.Inhalt
- Grundlagen der Zeitreihenanalyse:
- Definition von Zeitreihen und deren Anwendungsgebiete
- Charakteristische Eigenschaften von Zeitreihendaten (Trend, Saisonalität, Rauschen)
- Zeitreihendatenvisualisierung und -exploration
- Einführung in Machine Learning für Zeitreihen:
- Überblick über gängige Machine Learning-Modelle für Zeitreihenprognosen
- Unterschiede zwischen traditioneller Statistik-basierten Zeitreihenanalyse und ML-Ansätzen
- Vor- und Nachteile der Verwendung von ML in der Zeitreihenanalyse
- Data Preprocessing für Zeitreihen:
- Behandlung fehlender Werte und Ausreißer in Zeitreihendaten
- Skalierung und Normalisierung von Zeitreihen für ML-Modelle
- Zeitliche Strukturierung: Erzeugung von Lags und Rolling Windows für das Training von ML-Modellen
- Feature Engineering für Zeitreihen :
- Identifikation relevanter Features und Einflussgrößen in Zeitreihendaten
- Extraktion von Zeitreihenmerkmalen (z. B. Trend, Saisonalität) für die Vorhersage
- Möglichkeiten der Dimensionalitätsreduktion für Zeitreihenmerkmale
- Grundprinzipien von SVM:
- Funktionsweise von Support Vector Machines und Entscheidungsgrenzen
- Kernel-Trick und seine Bedeutung für nichtlineare Probleme
- C-Parameter und die Bedeutung der Regularisierung
- Anwendung von SVM auf Zeitreihen:
- Anpassung von SVM auf Zeitreihenstruktur (zeitliche Abhängigkeiten)
- Verwendung von SVM für Einzelwertprognosen und Mehrschrittprognosen
- Bewertung der Vorhersagequalität und Vergleich mit anderen ML-Modellen
- Hyperparameter-Tuning für SVM:
- Cross-Validation und Grid Search zur Optimierung von SVM-Parametern
- Auswirkungen verschiedener Kernel auf die Leistung des Modells
- Overfitting und Underfitting in SVM und wie sie vermieden werden können
- Praktisches Training mit SVM und Zeitreihen:
- Implementierung von SVM mit Python-Bibliotheken (z. B. Scikit-learn)
- Aufteilung der Daten in Trainings- und Testsets
- Schulung von SVM-Modellen für verschiedene Zeitreihenprognoseaufgaben
- Grundlagen von Random Forests :
- Ensemble-Methoden und ihre Vorteile für Zeitreihenprognosen
- Entscheidungsbäume als Grundlage für Random Forests
- Zufällige Merkmalsauswahl und Bootstrapping im Random Forest-Verfahren
- Anwendung von Random Forests auf Zeitreihen:
- Berücksichtigung von zeitlichen Abhängigkeiten in der Random Forest-Vorhersage
- Kombination von mehreren Entscheidungsbäumen zur Zeitreihenprognose
- Vergleich von Einzelwert- und Mehrschrittprognosen mit Random Forests
- Hyperparameter-Tuning für Random Forests:
- Optimierung der Anzahl von Bäumen und der Tiefe der Bäume
- Einfluss der Merkmalsauswahl auf die Modellleistung
- Cross-Validation und Randomized Search für die Hyperparameter-Optimierung
- Praktisches Training mit Random Forests und Zeitreihen:
- Implementierung von Random Forests mit Python-Bibliotheken (z. B. Scikit-learn)
- Aufteilung der Daten in Trainings- und Testsets
- Schulung von Random Forest-Modellen für verschiedene Zeitreihenprognoseaufgaben
- Bewertung der Leistung von SVM und Random Forests:
- Auswahl geeigneter Leistungsmetriken für Zeitreihenprognosen (z. B. Mean Absolute Error, Mean Squared Error)
- Visualisierung von Vorhersagen und tatsächlichen Zeitreihenwerten
- Statistische Tests für den Vergleich der Modelle
- Auswahl des besten Modells für die gegebene
Zeitreihenprognoseaufgabe:
- Berücksichtigung von Modellgenauigkeit und -komplexität
- Anwendung von Ensemble-Methoden zur Verbesserung der Vorhersagequalität
- Interpretierbarkeit der Modelle und deren Auswirkung auf die Entscheidungsfindung
- Fortgeschrittene Themen in der Zeitreihenanalyse mit Machine
Learning:
- Zeitreihen-Ensemble-Methoden: Kombination von Vorhersagen mehrerer Modelle
- Fortgeschrittene Modelle für Zeitreihen: z. B. LSTM (Long Short-Term Memory) für sequenzielle Daten
- Umgang mit unbalancierten Zeitreihen: Techniken zur Bewältigung von Klassenungleichgewicht in den Daten
- Praktisches Training mit fortgeschrittenen Modellen:
- Implementierung und Vergleich von Ensemble-Methoden und fortgeschrittenen Modellen
- Abschließende Bewertung der Modelle und Diskussion ihrer Anwendbarkeit
- Ausblick auf weitere Forschungsrichtungen und Entwicklungen in der Zeitreihenanalyse mit Machine Learning
Werden Sie über neue Bewertungen benachrichtigt
Schreiben Sie eine Bewertung
Haben Sie Erfahrung mit diesem Kurs? Schreiben Sie jetzt eine Bewertung und helfen Sie Anderen dabei die richtige Weiterbildung zu wählen. Als Dankeschön spenden wir € 1,00 an Stiftung Edukans.Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!