Introduction to Deep Learning for Computer Vision

Dauer
Ausführung
Online
Startdatum und Ort

Introduction to Deep Learning for Computer Vision

Xebia Academy
Logo von Xebia Academy
Bewertung: starstarstarstarstar_half 8,6 Bildungsangebote von Xebia Academy haben eine durchschnittliche Bewertung von 8,6 (aus 105 Bewertungen)

Tipp: Haben Sie Fragen? Für weitere Details einfach auf "Kostenlose Informationen" klicken.

Startdaten und Startorte

computer Online: Virtual
16. Sep 2024 bis 17. Sep 2024
Details ansehen
event 16. September 2024, 09:00-17:00, Virtual, Dag 1
event 17. September 2024, 09:00-17:00, Virtual, Dag 2

Beschreibung

What will you learn?

After the training, you will be able to:

  • Understand Deep Learning from the ground up: What are neural networks, how do they learn, and how can I optimize them for my task?
  • Learn today, apply tomorrow: Learn to build your own neural networks in Python using Tensorflow/Keras.
  • Build upon others: Finetune existing models and understand how you can use Transfer Learning to boost your model performance.
  • Computer Vision Fundamentals: Understand the power of convolutions for automatic feature extraction and construct convolutional neural networks for image classification.
  • Learn Best Practices: Ensure your model trains optimally by using data augmentations, memory-efficient trai…

Gesamte Beschreibung lesen

Frequently asked questions

Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!

Noch nicht den perfekten Kurs gefunden? Verwandte Themen: Karrierecoaching, Deep Learning, TensorFlow, Bewerbungstraining und Karriere.

What will you learn?

After the training, you will be able to:

  • Understand Deep Learning from the ground up: What are neural networks, how do they learn, and how can I optimize them for my task?
  • Learn today, apply tomorrow: Learn to build your own neural networks in Python using Tensorflow/Keras.
  • Build upon others: Finetune existing models and understand how you can use Transfer Learning to boost your model performance.
  • Computer Vision Fundamentals: Understand the power of convolutions for automatic feature extraction and construct convolutional neural networks for image classification.
  • Learn Best Practices: Ensure your model trains optimally by using data augmentations, memory-efficient training, fast data input pipelines, and optimized model architectures.

Program

DAY 1

  • Introduction: The rise of Deep Learning, its benefits, and current-day applications.
  • Understand Neural networks from the ground up: From single neurons to neural networks
  • The Learning in Deep Learning: (Stochastic) Gradient Descent and backpropagation.
  • Fundamental components of Neural Networks: From loss functions and neuron activations to normalization- to dropout layers.
  • Code it yourself: Build and optimize your first Deep Learning model in Python using Tensorflow/Keras.

    DAY 2
  • Introduction to Deep Learning for Computer Vision: Why neural networks are state-of-the-art for computer vision tasks.
  • The Cornerstone of Computer Vision: Understand the function and implementation of convolutions in deep neural networks.
  • Hands-on: Build your own Convolutional Neural Network (CNN) for image classification
  • Learn Best Practices: Implement data augmentations, optimize networks architectures, and speed up training using smart data input pipelines.
  • Build upon others: Use existing Computer Vision models, apply transfer learning and finetune them to your specific task.

This training is for you if:

  • You want to understand Deep Learning for Computer Vision from the ground up.
  • You want an in-depth understanding of modern Computer Vision AI and its applications.
  • You work with Computer Vision data such as images and videos and want to use AI for your use case.
  • You already have a basic understanding of Machine Learning concepts and want to push your skills to the next level.

This training is not for you if:

  • You are looking for a non-technical introduction to Computer Vision AI.
  • You have no experience in programming.
  • You only want apply Computer Vision AI, rather than knowing how it works.
  • You already have a good understanding of Deep Learning or Computer Vision and you look for an advanced training or specific application of Computer Vision AI.

Why should I follow this training?

  • You want to get into the field of AI, but are specifically interested in Computer Vision applications.
  • You not only want in-depth explanations, but also hands-on practice.
    -
    Our motto: Learn today, apply tomorrow!
  • You have a specific use case where Computer Vision AI may be the solution?
    -
    This course is the ideal starting point!

What else should I know?

After registering for this training, you will receive a confirmation email with practical information. A week before the training, we will ask you about any dietary requirements and share literature if you need to prepare.

Training information

  • All literature and course materials are included in the price. 
  • Information on the software and tooling will be shared before the start date.
  • This is a technical course involving some extent of programming. You will need a laptop.
  • Online courses are delivered via Zoom or Microsoft Teams.

See you soon!

Scale up your skills
Boost your career

Get the training you need to succeed, in every IT field.
Learn from the world's leading experts with public and in-company courses at Xebia Academy.

Werden Sie über neue Bewertungen benachrichtigt

Es wurden noch keine Bewertungen geschrieben.

Schreiben Sie eine Bewertung

Haben Sie Erfahrung mit diesem Training? Schreiben Sie jetzt eine Bewertung und helfen Sie Anderen dabei die richtige Weiterbildung zu wählen. Als Dankeschön spenden wir € 1,00 an Stiftung Edukans.

Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!

Bitte füllen Sie das Formular so vollständig wie möglich aus

(optional)
(optional)
(optional)
(optional)
(optional)
(optional)

Haben Sie noch Fragen?

(optional)

Anmeldung für Newsletter

Damit Ihnen per E-Mail oder Telefon weitergeholfen werden kann, speichern wir Ihre Daten.
Mehr Informationen dazu finden Sie in unseren Datenschutzbestimmungen.