Introduction to Deep Learning
computer Online: Virtual 5. Okt 2026 bis 7. Okt 2026Details ansehen event 5. Oktober 2026, 09:00-17:00, Virtual, Dag 1 event 6. Oktober 2026, 09:00-17:00, Virtual, Dag 2 event 7. Oktober 2026, 09:00-17:00, Virtual, Dag 3 |
What will you learn?
After the training, you will be able to:
- Build and train your own neural networks with TensorFlow/Keras
- Understand Recurrent Neural Networks: From simple RNNs to modern Transformers.
- Intuitively understand the theory behind Deep Learning: What are neurons, how do neural networks learn, and what other components do I need?
- Apply best practices to ensure your model trains optimally like automatic data augmentations, memory-efficient training and optimized model architectures.
- Build Convolutional Neural Networks and apply them to images
- Understand how you can use Transfer Learning to boost your model performance.
Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!
What will you learn?
After the training, you will be able to:
- Build and train your own neural networks with TensorFlow/Keras
- Understand Recurrent Neural Networks: From simple RNNs to modern Transformers.
- Intuitively understand the theory behind Deep Learning: What are neurons, how do neural networks learn, and what other components do I need?
- Apply best practices to ensure your model trains optimally like automatic data augmentations, memory-efficient training and optimized model architectures.
- Build Convolutional Neural Networks and apply them to images
- Understand how you can use Transfer Learning to boost your model performance.
Scale up your skills
Boost your career
Get the training you need to succeed, in every IT field.
Learn from the world's leading experts with public and in-company
courses at Xebia Academy.
Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!
