MLOps Engineering on AWS (MLOE)
Kursinhalt
- Module 0: Welcome
- Module 1: Introduction to MLOps
- Module 2: MLOps Development
- Module 3: MLOps Deployment
- Module 4: Model Monitoring and Operations
- Module 5: Wrap-up
Voraussetzungen
Erforderlich:
- AWS Technical Essentials (AWSE)
- DevOps Engineering on AWS (AWSDEVOPS)
- Practical Data Science with Amazon SageMaker (PDSASM)
Zusätzlich Empfohlen:
- The Elements of Data Science (digitaler Kurs) oder gleichwertige Erfahrung
- Machine Learning Terminology and Process (digitaler Kurs)
Zielgruppe
- DevOps Engineers
- ML Engineers
- Entwickler/Betriebe mit Verantwortung für die Operationalisierung von ML-Modellen
Detaillierter Kursinhalt
Module 0: Welcome
- Course introduction
Module 1: In…
Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!
Kursinhalt
- Module 0: Welcome
- Module 1: Introduction to MLOps
- Module 2: MLOps Development
- Module 3: MLOps Deployment
- Module 4: Model Monitoring and Operations
- Module 5: Wrap-up
Voraussetzungen
Erforderlich:
- AWS Technical Essentials (AWSE)
- DevOps Engineering on AWS (AWSDEVOPS)
- Practical Data Science with Amazon SageMaker (PDSASM)
Zusätzlich Empfohlen:
- The Elements of Data Science (digitaler Kurs) oder gleichwertige Erfahrung
- Machine Learning Terminology and Process (digitaler Kurs)
Zielgruppe
- DevOps Engineers
- ML Engineers
- Entwickler/Betriebe mit Verantwortung für die Operationalisierung von ML-Modellen
Detaillierter Kursinhalt
Module 0: Welcome
- Course introduction
Module 1: Introduction to MLOps
- Machine learning operations
- Goals of MLOps
- Communication
- From DevOps to MLOps
- ML workflow
- Scope
- MLOps view of ML workflow
- MLOps cases
Module 2: MLOps Development
- Intro to build, train, and evaluate machine learning models
- MLOps security
- Automating
- Apache Airflow
- Kubernetes integration for MLOps
- Amazon SageMaker for MLOps
- Lab: Bring your own algorithm to an MLOps pipeline
- Demonstration: Amazon SageMaker
- Intro to build, train, and evaluate machine learning models
- Lab: Code and serve your ML model with AWS CodeBuild
- Activity: MLOps Action Plan Workbook
Module 3: MLOps Deployment
- Introduction to deployment operations
- Model packaging
- Inference
- Lab: Deploy your model to production
- SageMaker production variants
- Deployment strategies
- Deploying to the edge
- Lab: Conduct A/B testing
- Activity: MLOps Action Plan Workbook
Module 4: Model Monitoring and Operations
- Lab: Troubleshoot your pipeline
- The importance of monitoring
- Monitoring by design
- Lab: Monitor your ML model
- Human-in-the-loop
- Amazon SageMaker Model Monitor
- Demonstration: Amazon SageMaker Pipelines, Model Monitor, model registry, and Feature Store
- Solving the Problem(s)
- Activity: MLOps Action Plan Workbook
Module 5: Wrap-up
- Course review
- Activity: MLOps Action Plan Workbook
- Wrap-up
Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!
