Statistics - Time Series Analysis
-
Dauer:
2 Tage -
Zeit:
10:00 - 16:00 -
Lieferart:
Online -
Zielgruppe:
Information Workers -
Vorkenntnisse:
General knowledge of math -
Methode:
Lecture with examples and exercises. - Erfahren Sie in der Demo mehr darüber, wie Online-Kurse durchgeführt werden.
-
Kursnummer:
2023294 -
Themen:
Time series analysis comprises methods for analyzing time series data in order to extract meaningful statistics and other characteristics of the data. Time series forecasting is the use of a model to predict future values based on previously observed values. The course provides tools for empirical work with time series data and is an introduction into the foundation of time series models. It focuses on both uni…
Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!
- Dauer:
2 Tage - Zeit:
10:00 - 16:00 - Lieferart:
Online - Zielgruppe:
Information Workers - Vorkenntnisse:
General knowledge of math - Methode:
Lecture with examples and exercises. - Erfahren Sie in der Demo mehr darüber, wie Online-Kurse durchgeführt werden.
- Kursnummer:
2023294
Themen:
Time series analysis comprises methods for analyzing time series data in order to extract meaningful statistics and other characteristics of the data. Time series forecasting is the use of a model to predict future values based on previously observed values. The course provides tools for empirical work with time series data and is an introduction into the foundation of time series models. It focuses on both univariate and multivariate time series analysis. After completing this course, a student will be able to analyze univariate and multivariate time series data using available software like MS Excel, SPSS and jMulti.
Estimation of the moment-generating functions (expected value, auto-covariance) - auto-correlation: the lag operator, creating and interpretating the correlogram - smoothing of time series data: moving averages, exponential smoothing - transformation and filtering of time series data - first-order and second-order differences
B. Decomposition of time series using deterministic modelsComponent models: additive and multiplicative models - seasonal structures in time series: trend, seasons and identification of the seasonal pattern, prognosis and residual analysis - level shifts - linear, parabolic, logistic, exponential fit and regression of time series - polynomials - quality measures
C. Periodicities in time seriesTrigonometric functions and their importance for periodic trends - period detection and frequencies - periodogram: identification and interpretation - regression models with periodic oscillations - spectra and spectral density estimation of time series - introduction to Fourier transformation for time series
D. Univariate linear time series models using AR(I)MAStationarity in time series - White Noise process - AR (Auto Regressive)-models - MA (Moving Average)-models - ARMA and ARIMA models - forecasting - residual analysis - statistical tests for linear time series models - quality measures and model selection
E. Analysis of multidimensional time series[0.25 days] Cross-correlation and cross-covariance - stationary cross-covariance - co-integration - introduction to cross-spectral analysis and coherence analysis
F. Multidimensional time series using VAR[0.25 days] VAR (Vector AutoRegressive) processes: modeling, prediction, residual analysis, quality measures, tests
G. Time series with exogenous influences[0.25 days] Regression with auto-correlated shocks - intervention analysis - transfer function models
Marco Skulschus (born in Germany in 1978) studied economics in Wuppertal (Germany) and Paris (France) and wrote his master´s thesis about semantic data modeling. He started working as a lecturer and consultant in 2002.
Veröffentlichungen
- "Grundlagen empirische Sozialforschung" (Comelio Medien, ISBN 978-3-939701-23-1)
- "System und Systematik von Fragebögen" (Comelio Medien, ISBN 978-3-939701-26-2)
- "Oracle PL/SQL" (Comelio Medien, ISBN 978-3-939701-40-8)
- "MS SQL Server - T-SQL Programmierung und Abfragen" (Comelio Medien, ISBN 978-3-939701-69-9)
Erfahrung: - He works as an IT-consultant and project manager. He developed various Business Intelligence systems for industry clients and the public sector. For several years now, he is responsible for a BI-team in India which is mainly involved in BI and OLAP projects, reporting systems as well as statistical analysis and Data Mining. He led several research projects and was leading scientist and project manager of a publicly funded project about interactive questionnaires and online surveys.
Projekte: - He works as an IT-consultant and project manager. He developed various Business Intelligence systems for industry clients and the public sector. For several years now, he is responsible for a BI-team in India which is mainly involved in BI and OLAP projects, reporting systems as well as statistical analysis and Data Mining.
Forschung: He led several research projects and was leading scientist and project manager of a publicly funded project about interactive questionnaires and online surveys.
Zertifizierung: Marco Skulschus is "Microsoft Certified Trainer", “Oracle Associate” and passed the ComptiaCTT+ examination.
Bei der Anmeldung von mehreren Teilnehmern bieten wir Ihnen
attraktive Rabatte an. Ab drei Teilnehmern kann sich ein
Inhouse-Seminar bei Ihnen lohnen. Gern erstellen wir Ihnen ein
individuelles Angebot.
Alle Preise zuzüglich der gesetzlichen Mehrwertsteuer.
Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!
