Einführung in Predictive Modelling mit R

Dauer
Ausführung
Vor Ort, Online
Startdatum und Ort

Einführung in Predictive Modelling mit R

GFU Cyrus AG
Logo von GFU Cyrus AG
Bewertung: starstarstarstarstar_border 7,9 Bildungsangebote von GFU Cyrus AG haben eine durchschnittliche Bewertung von 7,9 (aus 13 Bewertungen)

Tipp: Haben Sie Fragen? Für weitere Details einfach auf "Kostenlose Informationen" klicken.

Startdaten und Startorte
placeKöln
9. Apr 2026 bis 10. Apr 2026
computer Online: Zoom
9. Apr 2026 bis 10. Apr 2026
placeKöln
30. Jul 2026 bis 31. Jul 2026
computer Online: Zoom
30. Jul 2026 bis 31. Jul 2026
placeKöln
29. Okt 2026 bis 30. Okt 2026
computer Online: Zoom
29. Okt 2026 bis 30. Okt 2026
Beschreibung

Schulungen der Extraklasse ✔ Durchführungsgarantie ✔ Trainer aus der Praxis ✔ Kostenfreies Storno ✔ 3=2 Kostenfreie Teilnahme für den Dritten ✔ Persönliche Lernumgebung ✔ Kleine Lerngruppen

Seminarziel

Am Ende des Seminars sind die Teilnehmenden in der Lage, Predictive Modelling mit R umfassend zu nutzen, um datengetriebene Entscheidungen zu treffen und Vorhersagemodelle zu erstellen.

Inhalt

  • Einführung in Predictive Modelling und R
    • Definition und Konzepte: Erklärung, was Predictive Modelling ist, seine Bedeutung und Anwendungsbereiche; Überblick über die Programmiersprache R und ihre Vorteile für Predictive Modelling.
    • Einrichtung der Entwicklungsumgebung: Schritt-für-Schritt-Anleitung zur Installation und Konfiguration von R und RStudio; Einführung in die RStudio-Oberfläche und grundlegende Funktionen.
  • Datenaufbereitung und Vorverarbeitung
    • Datenerfassung und -bereinig…

Gesamte Beschreibung lesen

Frequently asked questions

Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!

Noch nicht den perfekten Kurs gefunden? Verwandte Themen: Data science mit R., R Programmiersprache, Data Science, Big Data und Data Mining.

Schulungen der Extraklasse ✔ Durchführungsgarantie ✔ Trainer aus der Praxis ✔ Kostenfreies Storno ✔ 3=2 Kostenfreie Teilnahme für den Dritten ✔ Persönliche Lernumgebung ✔ Kleine Lerngruppen

Seminarziel

Am Ende des Seminars sind die Teilnehmenden in der Lage, Predictive Modelling mit R umfassend zu nutzen, um datengetriebene Entscheidungen zu treffen und Vorhersagemodelle zu erstellen.

Inhalt

  • Einführung in Predictive Modelling und R
    • Definition und Konzepte: Erklärung, was Predictive Modelling ist, seine Bedeutung und Anwendungsbereiche; Überblick über die Programmiersprache R und ihre Vorteile für Predictive Modelling.
    • Einrichtung der Entwicklungsumgebung: Schritt-für-Schritt-Anleitung zur Installation und Konfiguration von R und RStudio; Einführung in die RStudio-Oberfläche und grundlegende Funktionen.
  • Datenaufbereitung und Vorverarbeitung
    • Datenerfassung und -bereinigung: Methoden zur Erfassung von Daten aus verschiedenen Quellen; Techniken zur Datenbereinigung, Umgang mit fehlenden Werten und Erkennung von Ausreißern.
    • Feature Engineering: Erstellung neuer Features aus Rohdaten; Techniken wie Skalierung, Normalisierung und One-Hot-Encoding; Bedeutung von Feature Selection und Reduktion.
  • Explorative Datenanalyse (EDA)
    • Datenvisualisierung: Nutzung von ggplot2 und anderen Visualisierungsbibliotheken zur Darstellung von Verteilungen, Zusammenhängen und Trends in den Daten.
    • Statistische Analyse: Durchführung statistischer Analysen zur Identifikation von Zusammenhängen und Mustern in den Daten; Berechnung von Kennzahlen wie Mittelwert, Median und Standardabweichung.
  • Modellauswahl und -training
    • Auswahl von ML-Algorithmen: Überblick über verschiedene Machine Learning-Algorithmen für Predictive Modelling, wie Lineare Regression, Entscheidungsbäume und KNN.
    • Training und Validierung: Techniken zur Modelltraining und -validierung, einschließlich Hyperparameter-Optimierung und Kreuzvalidierung; Einführung in Caret und andere R-Pakete für Modelltraining.
  • Modellbewertung und -optimierung
    • Modellbewertung: Anwendung von Metriken zur Bewertung der Modellleistung, wie Genauigkeit, Präzision, Recall, F1-Score und ROC-AUC; Nutzung von Confusion Matrix zur Fehleranalyse.
    • Modelloptimierung: Techniken zur Verbesserung der Modellleistung, wie Regularisierung, Feature-Selektionsverfahren und Ensemble-Methoden; Einführung in Boosting und Bagging.
  • Zeitreihenanalyse und Prognosemodelle
    • Datenvorbereitung für Zeitreihen: Vorbereitung von Zeitreihendaten für die Modellierung; Techniken wie Glättung, Differenzierung und Saisonalitätsanpassung.
    • Erstellung und Bewertung von Prognosemodellen: Anwendung von Modellen wie ARIMA, Exponential Smoothing und Prophet zur Zeitreihenprognose; Bewertung der Modellleistung mit spezifischen Zeitreihenmetriken.
  • Unüberwachtes Lernen und Clustering
    • Clustering-Methoden: Einführung in Clustering-Algorithmen wie K-Means, DBSCAN und Hierarchical Clustering; Anwendung dieser Algorithmen zur Segmentierung von Daten.
    • Dimensionalitätsreduktion: Nutzung von Techniken wie PCA (Principal Component Analysis) und t-SNE zur Reduktion der Datenkomplexität und Verbesserung der Modellinterpretierbarkeit.
  • NLP und Textanalyse
    • Vorverarbeitung von Textdaten: Techniken zur Tokenisierung, Stemming, Lemmatization und Entfernung von Stoppwörtern; Nutzung von R-Paketen wie tm und text2vec.
    • Modellierung und Analyse: Anwendung von Methoden wie TF-IDF, Word2Vec und LDA zur Textklassifikation und -analyse; Implementierung und Bewertung von NLP-Modellen.
  • Modell-Deployment und -Überwachung
    • Modell-Deployment: Bereitstellung von ML-Modellen in Produktionsumgebungen; Nutzung von Tools wie Plumber für die Erstellung von R-APIs.
    • Überwachung und Wartung: Implementierung von Überwachungsmechanismen zur Verfolgung der Modellleistung in der Produktion; Techniken zur Modellaktualisierung und -wartung.
  • Praxisbeispiele und Best Practices
    • Implementierung eines Predictive Modelling-Projekts: Durchführung eines Beispielprojekts zur Anwendung der erlernten Techniken und Methoden; Schritt-für-Schritt-Anleitung von der Planung bis zur Umsetzung.
    • Erfahrungsberichte und Best Practices: Präsentation realer Fallstudien und Best Practices zur erfolgreichen Implementierung und Nutzung von Predictive Modelling mit R in verschiedenen Anwendungsbereichen.

Werden Sie über neue Bewertungen benachrichtigt
Es wurden noch keine Bewertungen geschrieben.
Schreiben Sie eine Bewertung
Haben Sie Erfahrung mit diesem Kurs? Schreiben Sie jetzt eine Bewertung und helfen Sie Anderen dabei die richtige Weiterbildung zu wählen. Als Dankeschön spenden wir € 1,00 an Stiftung Edukans.

Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!

Bitte füllen Sie das Formular so vollständig wie möglich aus

(optional)
(optional)
(optional)
(optional)
(optional)
(optional)
(optional)

Haben Sie noch Fragen?

(optional)

Anmeldung für Newsletter

Damit Ihnen per E-Mail oder Telefon weitergeholfen werden kann, speichern wir Ihre Daten.
Mehr Informationen dazu finden Sie in unseren Datenschutzbestimmungen.