Data Science and Data Analytics with KNIME
placeKöln 27. Apr 2026 bis 29. Apr 2026check_circle Garantierte Durchführung |
computer Online: Zoom 27. Apr 2026 bis 29. Apr 2026check_circle Garantierte Durchführung |
placeKöln 27. Jul 2026 bis 29. Jul 2026 |
computer Online: Zoom 27. Jul 2026 bis 29. Jul 2026 |
placeKöln 12. Okt 2026 bis 14. Okt 2026 |
computer Online: Zoom 12. Okt 2026 bis 14. Okt 2026 |
Schulungen der Extraklasse ✔ Durchführungsgarantie ✔ Trainer aus der Praxis ✔ Kostenfreies Storno ✔ 3=2 Kostenfreie Teilnahme für den Dritten ✔ Persönliche Lernumgebung ✔ Kleine Lerngruppen
Seminarziel
The goal of the 3-day training course in Data Science and Data Analytics with KNIME is to equip participants with the knowledge and skills needed to effectively use KNIME for data preparation, visualization, modeling, and reporting. By the end of the course, participants should be able to design and implement data workflows using KNIME, apply machine learning techniques to solve analytical problems, and automate and deploy workflows using KNIME Server. The course aims to provide a comprehensive understanding of the concepts, techniques, and tools used in Data Science and Data Analytics using KNIME.Inhalt
Introduction to Data Analytics with KNIME- Introduction and Contex…
Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!
Schulungen der Extraklasse ✔ Durchführungsgarantie ✔ Trainer aus der Praxis ✔ Kostenfreies Storno ✔ 3=2 Kostenfreie Teilnahme für den Dritten ✔ Persönliche Lernumgebung ✔ Kleine Lerngruppen
Seminarziel
The goal of the 3-day training course in Data Science and Data Analytics with KNIME is to equip participants with the knowledge and skills needed to effectively use KNIME for data preparation, visualization, modeling, and reporting. By the end of the course, participants should be able to design and implement data workflows using KNIME, apply machine learning techniques to solve analytical problems, and automate and deploy workflows using KNIME Server. The course aims to provide a comprehensive understanding of the concepts, techniques, and tools used in Data Science and Data Analytics using KNIME.Inhalt
Introduction to Data Analytics with KNIME- Introduction and Context
- Overview of Data Science, Data Analytics, and related fields
- Chances and Risks of Data Science
- Tools for interactive reporting
- Communikation and reporting
- Tools for data analysis
- Extract, Transform, Load (ETL) with KNIME
- Introduction to KNIME
- Data import from simple formats
- Data verification
- Merging data
- Data cleaning
- Data formats
- Work documentation
- Workflow organization
- Data visualization
- Data export
- KNIME Machine Learning
- Introduction to machine learning
- Supervised and unsupervised learning
- Building and evaluating classification models
- Building and evaluating regression models
- Tuning model parameters
- Advanced Analytics with KNIME
- Text mining and natural language processing
- Time series analysis
- Advanced visualization with KNIME
- Workflow documentation
- Results communication and reporting with KNIME
- Data Science - Overview
- Introduction to Data Science and its origins
- The stages of analysis according to Gartner
- Basic concepts of statistics
- Descriptive statistics and data properties
- Machine Learning Techniques
- Regression, overfitting, Tree methods, Bagging, and Boosting
- Classification methods and techniques
- Unsupervised learning techniques
- Advanced KNIME
- Data streaming
- Time and date formats
- Looping in KNIME
- Data import from databases locally and remotely
- Data export to local and remote databases
- Basic math and logical operations
- KNIME Workflow Automation and Deployment
- Automating KNIME workflows
- Batch processing
- Email notifications
- Workflow documentation
- Workflow maintenance
- Workflow version control
- Deploying workflows to servers
- Deploying workflows as web services
- Integrating KNIME with other data tools and systems
- Automating data workflows with KNIME Server
- Integrating KNIME with other analytics tools (e.g. R, Python)
- Deploying KNIME workflows to cloud platforms (e.g. AWS,
Azure)
Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!
