daytime

Dauer

daytime

ExperTeach GmbH
Logo von ExperTeach GmbH
Bewertung: starstarstarstarstar_border 8,0 Bildungsangebote von ExperTeach GmbH haben eine durchschnittliche Bewertung von 8,0 (aus 38 Bewertungen)

Tipp: Haben Sie Fragen? Für weitere Details einfach auf "Kostenlose Informationen" klicken.

Startdaten und Startorte

Es gibt keine bekannten Startdaten für dieses Produkt.

Beschreibung

Dieser Kurs ist darauf ausgelegt, Generative Künstliche Intelligenz (KI) Softwareentwicklern vorzustellen, die daran interessiert sind, große Sprachmodelle (LLMs) ohne Feintuning zu verwenden. Der Kurs bietet einen Überblick über Generative KI, die Planung eines generativen KI-Projekts, den Einstieg in Amazon Bedrock, die Grundlagen des Prompt-Engineerings und die Architekturmuster zum Aufbau generativer KI-Anwendungen unter Verwendung von Amazon Bedrock und LangChain.

Kursinhalt

In diesem Kurs lernen Sie folgendes:

  • Beschreibung der generativen KI und wie sie mit maschinellem Lernen zusammenhängt
  • Bedeutung generativer KI und ihrer potenziellen Risiken und Vorteile
  • Der geschäftliche Nutzen v…

Gesamte Beschreibung lesen

Frequently asked questions

Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!

Noch nicht den perfekten Kurs gefunden? Verwandte Themen: KI, Microsoft Azure, VMware, Cloud Computing und Microsoft Windows Server 2008.

Dieser Kurs ist darauf ausgelegt, Generative Künstliche Intelligenz (KI) Softwareentwicklern vorzustellen, die daran interessiert sind, große Sprachmodelle (LLMs) ohne Feintuning zu verwenden. Der Kurs bietet einen Überblick über Generative KI, die Planung eines generativen KI-Projekts, den Einstieg in Amazon Bedrock, die Grundlagen des Prompt-Engineerings und die Architekturmuster zum Aufbau generativer KI-Anwendungen unter Verwendung von Amazon Bedrock und LangChain.

Kursinhalt

In diesem Kurs lernen Sie folgendes:

  • Beschreibung der generativen KI und wie sie mit maschinellem Lernen zusammenhängt
  • Bedeutung generativer KI und ihrer potenziellen Risiken und Vorteile
  • Der geschäftliche Nutzen von generativen KI-Anwendungen
  • Die technischen Grundlagen und der Schlüsselterminologie für generative KI
  • Die Schritte zur Planung eines generativen KI-Projekts
  • Identifikation einiger Risiken und Abhilfemaßnahmen beim Einsatz von generativer KI 
  • Funktionsweise von Amazon Bedrock 
  • Die grundlegenden Konzepte von Amazon Bedrock
  • Die Vorteile von Amazon Bedrock
  • Typische Anwendungsfälle für Amazon Bedrock
  • Typische Architektur einer Amazon Bedrock-Lösung
  • Die Kostenstruktur von Amazon Bedrock
  • Demonstration – Implementation von Amazon Bedrock in der AWS Management Console
  • Prompt Engineering und Anwendung allgemeiner Best Practices bei der Interaktion mit Foundation Models (FMs)
  • Die grundlegenden Arten von Prompt-Techniken, einschließlich Zero-Shot und Little-Shot Learning
  • Erweiterte Prompt-Techniken 
  • Welche Prompt-Techniken für bestimmte Modelle am besten geeignet sind
  • Identifizierung von potentiellem Prompt-Missbrauch
  • Analyse potenzieller Bias in FM-Antworten und Entwicklung von Prompts, die diesen Bias abschwächen
  • Identifizierung der Komponenten einer generativen KI-Anwendung und wie man einen FM anpasst
  • Amazon Bedrock Foundation-Modelle, Inferenzparameter und wichtige Amazon Bedrock APIs
  • Amazon Web Services (AWS) Services, die bei der Überwachung, Sicherung und Verwaltung Ihrer Amazon Bedrock Anwendungen helfen
  • Wie Sie LangChain mit LLMs, Prompt Templates, Chains, Chat-Modellen, Text
    Einbettungsmodellen, Document Loaders, Retrievern und Agenten für Amazon Bedrock intergrieren
  • Architekturmuster, die Sie mit Amazon Bedrock für den Aufbau generativer KI-Anwendungen implementieren können
  • Anwendungsbeispiele, die die verschiedenen Amazon Bedrock-Modelle, LangChain und den Retrieval Augmented Generation (RAG) Ansatz verwenden
Zielgruppe
  • Softwareentwickler, die LLMs ohne Feintuning verwenden möchten
Voraussetzungen

Wir empfehlen, dass die Teilnehmer an diesem Kurs die folgenden Voraussetzungen erfüllen:

  • Den Kurs AWS Technical Essentials abgeschlossen
  • Erweiterte Kenntnisse in Python

Werden Sie über neue Bewertungen benachrichtigt

Es wurden noch keine Bewertungen geschrieben.

Schreiben Sie eine Bewertung

Haben Sie Erfahrung mit diesem Training? Schreiben Sie jetzt eine Bewertung und helfen Sie Anderen dabei die richtige Weiterbildung zu wählen. Als Dankeschön spenden wir € 1,00 an Stiftung Edukans.

Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!

Bitte füllen Sie das Formular so vollständig wie möglich aus

(optional)
(optional)
(optional)
(optional)
(optional)

Anmeldung für Newsletter

Damit Ihnen per E-Mail oder Telefon weitergeholfen werden kann, speichern wir Ihre Daten und teilen sie ggf. mit ExperTeach GmbH. Mehr Informationen dazu finden Sie in unseren Datenschutzbestimmungen.