Simulation and modeling of natural processes

Methode

Simulation and modeling of natural processes

Coursera (CC)
Logo von Coursera (CC)
Bewertung: starstarstarstar_halfstar_border 7,2 Bildungsangebote von Coursera (CC) haben eine durchschnittliche Bewertung von 7,2 (aus 6 Bewertungen)

Tipp: Haben Sie Fragen? Für weitere Details einfach auf "Kostenlose Informationen" klicken.

Beschreibung

When you enroll for courses through Coursera you get to choose for a paid plan or for a free plan

  • Free plan: No certicification and/or audit only. You will have access to all course materials except graded items.
  • Paid plan: Commit to earning a Certificate—it's a trusted, shareable way to showcase your new skills.

About this course: This course gives you an introduction to modeling methods and simulation tools for a wide range of natural phenomena. The different methodologies that will be presented here can be applied to very wide range of topics such as fluid motion, stellar dynamics, population evolution, ... This course does not intend to go deeply into any numerical method or process and does not provide any recipe for the resolution of a particular problem. It is rather a basic guideline towards different methodologies that can be applied to solve any kind of problem and help you pick the one best suited for you. The assignments of this course will be made as practical as possible in order t…

Gesamte Beschreibung lesen

Frequently asked questions

Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!

Noch nicht den perfekten Kurs gefunden? Verwandte Themen: Scala, Web 2.0, Webdesign, Webmaster und Barrierefreies Webdesign.

When you enroll for courses through Coursera you get to choose for a paid plan or for a free plan

  • Free plan: No certicification and/or audit only. You will have access to all course materials except graded items.
  • Paid plan: Commit to earning a Certificate—it's a trusted, shareable way to showcase your new skills.

About this course: This course gives you an introduction to modeling methods and simulation tools for a wide range of natural phenomena. The different methodologies that will be presented here can be applied to very wide range of topics such as fluid motion, stellar dynamics, population evolution, ... This course does not intend to go deeply into any numerical method or process and does not provide any recipe for the resolution of a particular problem. It is rather a basic guideline towards different methodologies that can be applied to solve any kind of problem and help you pick the one best suited for you. The assignments of this course will be made as practical as possible in order to allow you to actually create from scratch short programs that will solve simple problems. Although programming will be used extensively in this course we do not require any advanced programming experience in order to complete it.

Created by:  University of Geneva
  • Taught by:  Bastien Chopard, Full Professor

    Computer Science
  • Taught by:  Jean-Luc Falcone, Research Associate

    Computer Science
  • Taught by:  Jonas Latt, Senior Lecturer

    Computer Science
  • Taught by:  Orestis Malaspinas, Research Associate

    Computer Science Department
Language English How To Pass Pass all graded assignments to complete the course. User Ratings 4.4 stars Average User Rating 4.4See what learners said Задания курса

Каждый курс — это интерактивный учебник, который содержит видеоматериалы, тесты и проекты.

Помощь сокурсников

Общайтесь с тысячами других учащихся: обсуждайте идеи, материалы курса и помогайте друг другу осваивать новые понятия.

Сертификаты

Получите документы о прохождении курсов и поделитесь своим успехом с друзьями, коллегами и работодателями.

University of Geneva Founded in 1559, the University of Geneva (UNIGE) is one of Europe's leading universities. Devoted to research, education and dialogue, the UNIGE shares the international calling of its host city, Geneva, a centre of international and multicultural activities with a venerable cosmopolitan tradition.

Syllabus


WEEK 1


Introduction and general concepts



This module gives an overview of the course and presents the general ideas about modeling and simulation. An emphasis is given on ways to represent space and time from a conceptual point of view. An insight of modeling of complex systems is given with the simulation of the grothw and thrombosis of giant aneurysms. Finally, a first class of modeling approaches is presented: the Monte-Carlo methods.


7 videos, 1 reading expand


  1. Материал для самостоятельного изучения: Course slides
  2. Video: Objectives and background
  3. Video: Modeling and Simulation
  4. Video: Modeling Space and Time
  5. Video: Example of bio-medical Modeling
  6. Video: Monte Carlo methods I
  7. Video: Monte Carlo methods II
  8. Video: Monte Carlo methods III

Graded: Introduction and general concepts

WEEK 2


Introduction to programming with Python 3
This module intends to provide the most basic concepts of high performance computing used for modeling purposes. It also aims at teaching the basics of Python 3 which will be the programming language used for the quizzes in this course.


12 videos, 2 readings expand


  1. Материал для самостоятельного изучения: Course slides
  2. Video: Introduction to high performance computing for modeling
  3. Video: Concepts of code optimization
  4. Video: Concepts of parallelism
  5. Video: Palabos, a parallel lattice Boltzmann solver
  6. Материал для самостоятельного изучения: Dive into python 3
  7. Video: An introduction to Python 3
  8. Video: Running a Python program
  9. Video: Variables and data types
  10. Video: Operators
  11. Video: Conditional Statements
  12. Video: Loops
  13. Video: Functions
  14. Video: NumPy

Graded: Introduction to programming with Python 3
Graded: Project - Piles
Graded: Project - Class:Integration

WEEK 3


Dynamical systems and numerical integration



Dynamical systems modeling is the principal method developed to study time-space dependent problems. It aims at translating a natural phenomenon into a mathematical set of equations. Once this basic step is performed the principal obstacle is the actual resolution of the obtained mathematical problem. Usually these equations do not possess an analytical solution and advanced numerical methods must be applied to solve them. In this module you will learn the basics of how to write mathematical equations representing natural phenomena and then how to numerically solve them.


9 videos, 1 reading expand


  1. Материал для самостоятельного изучения: Course slides
  2. Video: General introduction to dynamical systems
  3. Video: The random walk
  4. Video: Growth of a population
  5. Video: Balance equations I
  6. Video: Balance equations II
  7. Video: Integration of ordinary differential equations
  8. Video: Error of the approximation
  9. Video: The implicit Euler scheme
  10. Video: Numerical integration of partial differential equations

Graded: Dynamical systems and numerical integration
Graded: The implicit Euler scheme
Graded: Project - Lotka-Volterra

WEEK 4


Cellular Automata



This module defines the concept of cellular automata by outlining the basic building blocks of this method. Then an insight of how to apply this technique to natural phenomena is given. Finally the lattice gas automata, a subclass of models used for fluid flows, is presented.


7 videos, 2 readings expand


  1. Материал для самостоятельного изучения: Course slides
  2. Video: Definition and basic concepts
  3. Video: Historical background
  4. Video: A mathematical abstraction of reality
  5. Video: Cellular Automata Models for Traffic
  6. Video: Complex systems
  7. Video: Lattice-gas models
  8. Video: Microdynamics of LGA
  9. Материал для самостоятельного изучения: Notes on the Parity Rule

Graded: Cellular Automata
Graded: Project - The Parity Rule

WEEK 5


Lattice Boltzmann modeling of fluid flow



This module provides an introduction to the lattice Boltzmann method, a powerful tool in computational fluid dynamics. The lesson is practice oriented and show, step by step, how to write a program for the lattice Boltzmann method. The program is used to showcase an interesting problem in fluid dynamics, the simulation of a vortex street behind an obstacle.


8 videos, 1 reading, 1 practice quiz expand


  1. Материал для самостоятельного изучения: Course slides
  2. Video: Computational Fluid Dynamics: Overview
  3. Video: Equations and challenges
  4. Video: From Lattice Gas to Lattice Boltzmann
  5. Video: Macroscopic Variables
  6. Video: Collision step: the BGK model
  7. Video: Streaming Step
  8. Video: Boundary Conditions
  9. Video: Flow around an obstacle
  10. Тренировочный тест: Optional - Equations and challenges

Graded: Lattice Boltzmann modeling of fluid flow
Graded: Project - Flow around a cylinder
Graded: Collision Invariant

WEEK 6


Particles and point-like objects



A short review of classical mechanics, and of numerical methods used to integrate the equations of motions for many interacting particles is presented. The student will learn that the computational expense of resolving all interaction between particles poses a major obstacle to simulating such a system. Specific algorithms are presented to allow to cut down on computational expense, both for short-range and large-range forces. The module focuses in detail on the Barnes-Hut algorithm, a tree algorithm which is popular a popular approach to solve the N-Body problem.


6 videos, 1 reading expand


  1. Материал для самостоятельного изучения: Course slides
  2. Video: Particles and point-like objects: Overview
  3. Video: Newton’s laws of motion, potentials and forces
  4. Video: Time-integration of equations of motion
  5. Video: The Lennard-Jones potential: Introducing a cut-off distance
  6. Video: The n-body problem: Evaluation of gravitational forces
  7. Video: Barnes-Hut algorithm: using the quadtree

Graded: Particles and point-like objects
Graded: Project - Barnes-Hut Galaxy Simulator

WEEK 7


Introduction to Discrete Events Simulation



In this module, we will see an alternative approach to model systems which display a trivial behaviour most of the time, but which may change significantly under a sequence of discrete events. Initially developed to simulate queue theory systems (such as consumer waiting queue), the Discrete Event approach has been apply to a large variety of problems, such as traffic intersection modeling or volcanic hazard predictions.


6 videos, 1 reading expand


  1. Материал для самостоятельного изучения: Course slides
  2. Video: Introduction to Discrete Events
  3. Video: Definition of Discrete Events Simulations
  4. Video: Optimisation problems
  5. Video: Implementation matters
  6. Video: Traffic intersection
  7. Video: Volcano ballistics

Graded: Introduction to Discrete Event Simulation
Graded: Project - Simple modelling of traffic lights

WEEK 8


Agent based models



Agent Based Models (ABM) are used to model a complex system by decomposing it in small entities (agents) and by focusing on the relations between agents and with the environment. This approach is derived from artificial intelligence research and is currently used to model various systems such as pedestrian behaviour, social insects, biological cells, etc.


6 videos, 1 reading expand


  1. Материал для самостоятельного изучения: Course slides
  2. Video: Motivation
  3. Video: Agents
  4. Video: Multi-Agent systems
  5. Video: Implementation of Agent Based Models
  6. Video: Ants Corpse clustering
  7. Video: Bacteria chemotaxy

Graded: Agent based models
Graded: Project - Multi-agents model
Werden Sie über neue Bewertungen benachrichtigt
Es wurden noch keine Bewertungen geschrieben.
Schreiben Sie eine Bewertung
Haben Sie Erfahrung mit diesem Kurs? Schreiben Sie jetzt eine Bewertung und helfen Sie Anderen dabei die richtige Weiterbildung zu wählen. Als Dankeschön spenden wir € 1,00 an Stiftung Edukans.

Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!

Bitte füllen Sie das Formular so vollständig wie möglich aus

(optional)
(optional)
(optional)
(optional)

Haben Sie noch Fragen?

(optional)

Anmeldung für Newsletter

Damit Ihnen per E-Mail oder Telefon weitergeholfen werden kann, speichern wir Ihre Daten.
Mehr Informationen dazu finden Sie in unseren Datenschutzbestimmungen.