Data Science at Scale - Capstone Project

Methode

Data Science at Scale - Capstone Project

Coursera (CC)
Logo von Coursera (CC)
Bewertung: starstarstarstar_halfstar_border 7,2 Bildungsangebote von Coursera (CC) haben eine durchschnittliche Bewertung von 7,2 (aus 6 Bewertungen)

Tipp: Haben Sie Fragen? Für weitere Details einfach auf "Kostenlose Informationen" klicken.

Beschreibung

When you enroll for courses through Coursera you get to choose for a paid plan or for a free plan

  • Free plan: No certicification and/or audit only. You will have access to all course materials except graded items.
  • Paid plan: Commit to earning a Certificate—it's a trusted, shareable way to showcase your new skills.

About this course: In the capstone, students will engage on a real world project requiring them to apply skills from the entire data science pipeline: preparing, organizing, and transforming data, constructing a model, and evaluating results. Through a collaboration with Coursolve, each Capstone project is associated with partner stakeholders who have a vested interest in your results and are eager to deploy them in practice. These projects will not be straightforward and the outcome is not prescribed -- you will need to tolerate ambiguity and negative results! But we believe the experience will be rewarding and will better prepare you for data science projects in practice.

Create…

Gesamte Beschreibung lesen

Frequently asked questions

Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!

When you enroll for courses through Coursera you get to choose for a paid plan or for a free plan

  • Free plan: No certicification and/or audit only. You will have access to all course materials except graded items.
  • Paid plan: Commit to earning a Certificate—it's a trusted, shareable way to showcase your new skills.

About this course: In the capstone, students will engage on a real world project requiring them to apply skills from the entire data science pipeline: preparing, organizing, and transforming data, constructing a model, and evaluating results. Through a collaboration with Coursolve, each Capstone project is associated with partner stakeholders who have a vested interest in your results and are eager to deploy them in practice. These projects will not be straightforward and the outcome is not prescribed -- you will need to tolerate ambiguity and negative results! But we believe the experience will be rewarding and will better prepare you for data science projects in practice.

Created by:  University of Washington
  • Taught by:  Bill Howe, Director of Research

    Scalable Data Analytics
Basic Info Course 4 of 4 in the Data Science at Scale Specialization Commitment 6 weeks of study, 3-4 hours/week Language English How To Pass Pass all graded assignments to complete the course. User Ratings 4.0 stars Average User Rating 4.0See what learners said Coursework

Each course is like an interactive textbook, featuring pre-recorded videos, quizzes and projects.

Help from your peers

Connect with thousands of other learners and debate ideas, discuss course material, and get help mastering concepts.

Certificates

Earn official recognition for your work, and share your success with friends, colleagues, and employers.

University of Washington Founded in 1861, the University of Washington is one of the oldest state-supported institutions of higher education on the West Coast and is one of the preeminent research universities in the world.

Syllabus


WEEK 1


Project A: Blight Fight
In this project, you will build a model to predict when a building is likely to be condemned. The data is real, the problem is real, and the impact is real.


2 readings expand


  1. Reading: Get the Data
  2. Reading: Understand the Domain
  3. Discussion Prompt: Milestone: Discuss the Problem and Approaches


WEEK 2


Week 2: Derive a list of buildings
You are given sets of incidents with location information; you need to use some assumptions to group these incidents by location to identify specific buildings.


1 reading expand


  1. Reading: Milestone: Create a list of "buildings" from a list of geo-located incidents
  2. Peer Review: Reflecting on defining "buildings"


WEEK 3


Week 3: Construct a training dataset
Construct a training set by associating each of your buildings with a ground truth label derived from the permit data.


1 reading expand


  1. Reading: Milestone: Derive labels for each building
  2. Peer Review: Reflecting on the labeling scheme


WEEK 4


Week 4: Train and evaluate a simple model
Use a trivial feature set to train and evaluate a simple model


1 reading expand


  1. Reading: Milestone: Train a Simple Model
  2. Peer Review: Reflecting on a trivial initial model


WEEK 5


Week 5: Feature Engineering
Derive additional features and retrain to improve the efficacy of your model.


1 reading expand


  1. Reading: Milestone: Adding more features
  2. Peer Review: Reflection on your proposed features


WEEK 6


Week 6: Final Report
Enter your final report for grading.




    Graded: Final Report
    Werden Sie über neue Bewertungen benachrichtigt
    Es wurden noch keine Bewertungen geschrieben.
    Schreiben Sie eine Bewertung
    Haben Sie Erfahrung mit diesem Kurs? Schreiben Sie jetzt eine Bewertung und helfen Sie Anderen dabei die richtige Weiterbildung zu wählen. Als Dankeschön spenden wir € 1,00 an Stiftung Edukans.

    Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!

    Bitte füllen Sie das Formular so vollständig wie möglich aus

    (optional)
    (optional)
    (optional)
    (optional)

    Haben Sie noch Fragen?

    (optional)

    Anmeldung für Newsletter

    Damit Ihnen per E-Mail oder Telefon weitergeholfen werden kann, speichern wir Ihre Daten.
    Mehr Informationen dazu finden Sie in unseren Datenschutzbestimmungen.