Machine Learning Explainability Training
Startdaten und Startorte
placeWibautstraat 200, Amsterdam 12. Jun 2025Details ansehen event 12. Juni 2025, 09:00-17:00, Wibautstraat 200, Amsterdam, Dag 1 |
placeWibautstraat 200, Amsterdam 1. Okt 2025Details ansehen event 1. Oktober 2025, 09:00-17:00, Wibautstraat 200, Amsterdam, Dag 1 |
Beschreibung
Get a toolbox of interpretability techniques you can use in your daily work, understanding when and how you can and should use them.
Start by applying techniques based on implementations from popular packages and what their drawbacks are to prevent investigating blackbox models with blackbox interpretability techniques.
Requirements
You should be proficient with scikit-learn:
- Pipelines
- Column transformers
- Linear models, and more complex models (e.g. random forests and gradient boosting).
What you'll learn
- Understand the use cases for model explainability: debug, right to explanation, etc.
- Understand when model explainability is not enough (e.g. causality and fairness).
- Categorize the meth…
Frequently asked questions
Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!
Get a toolbox of interpretability techniques you can use in your daily work, understanding when and how you can and should use them.
Start by applying techniques based on implementations from popular packages and what their drawbacks are to prevent investigating blackbox models with blackbox interpretability techniques.
Requirements
You should be proficient with scikit-learn:
- Pipelines
- Column transformers
- Linear models, and more complex models (e.g. random forests and gradient boosting).
What you'll learn
- Understand the use cases for model explainability: debug, right to explanation, etc.
- Understand when model explainability is not enough (e.g. causality and fairness).
- Categorize the methods covered between sensitivity/impact and global/local.
- Apply the methods with the provided packages.
- Explain the inner workings of all methods.
- Articulate the downsides of each method.
- Evaluate whether a method is appropriate for the business use case.
Using scikit-learn, dalex, and shap, we will look at:
- Addictive Attributions.
- Partial Dependence Plots.
- Individual Conditional Expectation Curves.
- Permutation Importance.
- Shapley Values.
Our Data Science learning journey
After following the Machine Learning Explainability training course, you can also deepen your knowledge as a Data Science. Our courses combine just the right blend of theory with practical exercises.
Check out the Data Science learning journey at Xebia Data.
What else should I know?
- Available online instructor-led, classroom, and in-company. This training can be delivered both in-person and online. When hosting the in-person training, we provide lunch, snacks, and drinks to the participants. Accordingly, there is a discount for virtual training courses.
- Don't worry, you don't have to install any software on your laptop.
- This course is brought to you by Xebia Data.
- Travel and accommodation expenses are not included.
Scale up your skills
Boost your career
Get the training you need to succeed, in every IT field.
Learn from the world's leading experts with public and in-company
courses at Xebia Academy.
Werden Sie über neue Bewertungen benachrichtigt
Schreiben Sie eine Bewertung
Haben Sie Erfahrung mit diesem Training? Schreiben Sie jetzt eine Bewertung und helfen Sie Anderen dabei die richtige Weiterbildung zu wählen. Als Dankeschön spenden wir € 1,00 an Stiftung Edukans.Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!