KI Grundlagen - Deep Learning und Neuronale Netze mit Python

Dauer
Ausführung
Vor Ort
Startdatum und Ort

KI Grundlagen - Deep Learning und Neuronale Netze mit Python

Cegos Integrata GmbH
Logo von Cegos Integrata GmbH
Bewertung: starstarstarstarstar_border 8,4 Bildungsangebote von Cegos Integrata GmbH haben eine durchschnittliche Bewertung von 8,4 (aus 40 Bewertungen)

Tipp: Haben Sie Fragen? Für weitere Details einfach auf "Kostenlose Informationen" klicken.

Startdaten und Startorte

placeonline Training
20. Mär 2024 bis 22. Mär 2024
Details ansehen
event 20. März 2024, 09:00-17:00, online Training, Seminar 54520
placeonline Training
17. Jun 2024 bis 19. Jun 2024
Details ansehen
event 17. Juni 2024, 09:00-17:00, online Training, Seminar 54520
placeonline Training
16. Dez 2024 bis 18. Dez 2024
Details ansehen
event 16. Dezember 2024, 09:00-17:00, online Training, Seminar 54520

Beschreibung

Willkommen und Organisatorisches

  • Vorstellungsrunde der Teilnehmer
  • Erwartungen der Teilnehmer an den Kurs
  • Einführung in Jupyter Notebooks
  • Nutzung von Cloud-Ressourcen für Berechnungen

Grundlagen von Maschinellem Lernen und Künstlicher Intelligenz (KI)

  • Kurze Übersicht und historischer Hintergrund des Deep Learning
  • Verständnis von KI, Deep Learning und Machine Learning
  • Beispiele aktueller Deep Learning Algorithmen in marktüblichen Produkten
  • Eigenständige Erstellung und Schulung eines grundlegenden neuronalen Netzes mit Keras

Daten Aufbereitung

  • Effektive Vermeidung von Overfitting bei Machine Learning Algorithmen
  • Strukturierung der Daten durch Trainings-Validierungs-Test Split zur Overfitti…

Gesamte Beschreibung lesen

Frequently asked questions

Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!

Noch nicht den perfekten Kurs gefunden? Verwandte Themen: Deep Learning, TensorFlow, Python, Data Science und Machine Learning.

Willkommen und Organisatorisches

  • Vorstellungsrunde der Teilnehmer
  • Erwartungen der Teilnehmer an den Kurs
  • Einführung in Jupyter Notebooks
  • Nutzung von Cloud-Ressourcen für Berechnungen

Grundlagen von Maschinellem Lernen und Künstlicher Intelligenz (KI)

  • Kurze Übersicht und historischer Hintergrund des Deep Learning
  • Verständnis von KI, Deep Learning und Machine Learning
  • Beispiele aktueller Deep Learning Algorithmen in marktüblichen Produkten
  • Eigenständige Erstellung und Schulung eines grundlegenden neuronalen Netzes mit Keras

Daten Aufbereitung

  • Effektive Vermeidung von Overfitting bei Machine Learning Algorithmen
  • Strukturierung der Daten durch Trainings-Validierungs-Test Split zur Overfitting-Erkennung
  • Optimale Datenvorbereitung durch Normalisierung und One-Hot Encoding
  • Anwendung dieser Methoden auf den MNIST Datensatz

Multi-Layer-Perceptron (MLP) in Keras/Tensorflow (Neuronales Netz)

  • Wichtige Elemente eines MLPs: Perceptron, Gewichtungen, Bias
  • Einsicht in Non-linearities (Aktivierungsfunktionen)
  • Einsatz von Softmax bei Klassifikationsaufgaben

Netzwerktraining und Anwendung auf neue Daten

  • Auswahl passender Loss-Funktionen je nach Aufgabe
  • Verständnis von Backpropagation: Anpassung der Gewichtungen
  • Initiierung der Gewichtungen für reibungsloses Training
  • Epochen und Batch-Size – Schlüsselparameter des Trainingsprozesses
  • Interpretation des Outputs während des Trainings
  • Einsatz des trainierten Modells für Vorhersagen auf neuen Daten

Convolutional Neural Network (CNN) – Teil I

  • Erläuterung der Convolutional Layer (Faltungsschicht)
  • Aufbau und Anwendung von Filtern
  • Steuerung von Padding und Stride bei der Convolution

Convolutional Neural Network (CNN) – Teil II

  • Optimierung der Anzahl an Channels und Filtern in der Faltungsschicht
  • Einfluss von Bias in einem CNN
  • Nutzung des Max-Pooling Layers für Dimensionalitätsreduktion
  • Analyse der Lernprozesse in verschiedenen Ebenen eines CNNs

Keras Callbacks für optimales Training

  • Implementierung und Einsatz von Keras Callbacks
  • Speicherung von Modellgewichtungen und Architektur
  • Frühzeitiges Beenden von Training mit Early Stopping
  • Steuerung der Lernrate durch Learning Rate Scheduler
  • Visualisierung des Trainingsverlaufs mit MlFlow

Bildklassifikation durch tiefe Netzwerke

  • Einsatz des Softmax-Layers für Klassifikationsprobleme
  • Berücksichtigung des Cross-Entropy Loss
  • Einblick in bekannte Netzwerkarchitekturen: VGG-16 und AlexNet
  • Anwendung von Regularisierungen: L2 Regularisierung, Drop-Out, Batch Normalisation
  • Laden eines vortrainierten Modells für weitere Nutzung

Daten Einlesen mittels TF.Data

  • Typischer Workflow für Datenverarbeitung mit tf.data
  • Effiziente Verarbeitung großer Datensätze
  • Beschleunigung des Einleseprozesses

Semi Supervised Learning (SSL) für breitere Anwendbarkeit

  • Übersicht über Semi Supervised Learning Ansätze
  • Einsatz des SimCLR Modells für Semi Supervised Learning
  • Eigenständige Erstellung eines individuellen tf.keras Modells
  • Nutzung des contrastive loss für Semi Supervised Learning

Best Practices für erfolgreiche Projekte

  • Einführung in bewährte Vorgehensweisen bei neuen Deep Learning Aufgaben
  • Hyperparameter Optimierung für optimale Modellleistung
  • Optimierung des Modells nach dem Training für bestmögliche Ergebnisse

Feintuning und vortrainierte Netzwerke für bessere Ergebnisse

  • Erläuterung weiterer etablierter Netzwerkarchitekturen: Inception-V3, ResNet
  • Zugang zu existierendem Code für bereits trainierte Netzwerke
  • Ausnutzung vortrainierter Netzwerke durch Feintuning und Transfer Learning

Werden Sie über neue Bewertungen benachrichtigt

Es wurden noch keine Bewertungen geschrieben.

Schreiben Sie eine Bewertung

Haben Sie Erfahrung mit diesem Kurs? Schreiben Sie jetzt eine Bewertung und helfen Sie Anderen dabei die richtige Weiterbildung zu wählen. Als Dankeschön spenden wir € 1,00 an Stiftung Edukans.

Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!

Bitte füllen Sie das Formular so vollständig wie möglich aus

(optional)
(optional)
(optional)
(optional)
(optional)
(optional)
(optional)

Haben Sie noch Fragen?

(optional)

Anmeldung für Newsletter

Damit Ihnen per E-Mail oder Telefon weitergeholfen werden kann, speichern wir Ihre Daten.
Mehr Informationen dazu finden Sie in unseren Datenschutzbestimmungen.