Machine Learning und Deep Learning im Unternehmenseinsatz

Dauer

Machine Learning und Deep Learning im Unternehmenseinsatz

GFU Cyrus AG
Logo von GFU Cyrus AG
Bewertung: starstarstarstar_halfstar_border 6,9 Bildungsangebote von GFU Cyrus AG haben eine durchschnittliche Bewertung von 6,9 (aus 8 Bewertungen)

Tipp: Haben Sie Fragen? Für weitere Details einfach auf "Kostenlose Informationen" klicken.

Startdaten und Startorte

Es gibt keine bekannten Startdaten für dieses Produkt.

GFU Cyrus AG bietet seine Kurse in den folgenden Regionen an: Augsburg, Berlin, Bielefeld, Bochum, Bonn, Braunschweig, Bremen, Chemnitz, Darmstadt, Dortmund, Dresden, Duisburg, Düsseldorf, Erfurt, Essen, Frankfurt am Main, Frankfurt an der Oder, Hamburg, Hannover, Heidelberg, Karlsruhe, Kassel, Kiel, Knittlingen, Köln, Lausitz, Leipzig, Magdeburg, Mannheim, Mecklenburg-Vorpommern, München, Münster, Neubrandenburg, Nürnberg, Paderborn, Potsdam, Regensburg, Rostock, Saarbrücken, Schwerin, Stralsund, Stuttgart, Trier, Ulm, Wiesbaden, Wuppertal, Würzburg

Beschreibung

Schulungen der Extraklasse ✔ Durchführungsgarantie ✔ Trainer aus der Praxis ✔ Kostenfreies Storno ✔ 3=2 Kostenfreie Teilnahme für den Dritten ✔ Persönliche Lernumgebung ✔ Kleine Lerngruppen

Seminarziel

Die Schulung gibt einen Überblick über die gängigen Methoden des Maschinellen Lernens sowie weitere Auswertungstechniken.

Inhalt

1. Tag: Einführung in die Datenwissenschaft für datengetriebene Entscheidungen
Sie lernen, wie man wirtschaftliche Fragestellungen in ein Modellierungsproblem umwandelt. Wir starten dazu mit realen Daten und bereiten diese für die Modellierung vor.

  • Einsatz von maschinellem Lernen für Geschäftszwecke
    • Churn Prediction
    • Prevention
    • Ad Click Predictions
    • Recommender Systems
    • Image Recognition
    • Fraud and Risk Detection
    • Dynamic Pricing Calculations
    • Sports Analytics
    • Engagement Increase
    • Predictive Demand
    • Neue Kreditvergabemodelle
  • Von wirtschaftlichen Fragestel…

Gesamte Beschreibung lesen

Frequently asked questions

Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!

Noch nicht den perfekten Kurs gefunden? Verwandte Themen: Deep Learning, Machine Learning, Python, Data Science und Künstliche Intelligenz.

Schulungen der Extraklasse ✔ Durchführungsgarantie ✔ Trainer aus der Praxis ✔ Kostenfreies Storno ✔ 3=2 Kostenfreie Teilnahme für den Dritten ✔ Persönliche Lernumgebung ✔ Kleine Lerngruppen

Seminarziel

Die Schulung gibt einen Überblick über die gängigen Methoden des Maschinellen Lernens sowie weitere Auswertungstechniken.

Inhalt

1. Tag: Einführung in die Datenwissenschaft für datengetriebene Entscheidungen
Sie lernen, wie man wirtschaftliche Fragestellungen in ein Modellierungsproblem umwandelt. Wir starten dazu mit realen Daten und bereiten diese für die Modellierung vor.

  • Einsatz von maschinellem Lernen für Geschäftszwecke
    • Churn Prediction
    • Prevention
    • Ad Click Predictions
    • Recommender Systems
    • Image Recognition
    • Fraud and Risk Detection
    • Dynamic Pricing Calculations
    • Sports Analytics
    • Engagement Increase
    • Predictive Demand
    • Neue Kreditvergabemodelle
  • Von wirtschaftlichen Fragestellungen zum Model
  • Praxis: Arbeit mit Daten
    • Datensäuberung
    • Behandlung fehlender Werte
    • Ausreißer
    • Verteilungen
    • Datentransformation
    • Selektion von Merkmalen
    • Dimensionsreduzierung (Principal Component Analysis, PCA)
    • Erste Modellierung mit ausgewähltem Klassifikator

2. Tag: Von Modellierungsalgorithmen bis hin zur Optimierung
Sie bekommen einen Überblick über verschiedene Algorithmen, die für die Modellierung verwendet werden können. Es wird gezeigt, wie das Ergebnis der Modellierung durch Parametertuning verbessert werden kann. Des Weiteren wird im Detail gezeigt, wie man eine passende Auswertungsmetrik wählt, die der Lösung der Fragestellung am besten entspricht.

  • Überblick über Modellierungsalgorithmen
    • Klassifizierung
    • Clustering
    • Regression
  • Praxis: Auswertung der Performance verschiedener Algorithmen mit den
  • Daten vom ersten Tag
  • Deep Learning
  • Auswertung der Metriken und welche Metrik für welche Probleme eingesetzt werden sollte
    • Accuracy (Genauigkeit)
    • ROC (Receiver-Operating-Characteristic-Kurve bzw.
    • Grenzwertoptimierungskurve)
    • AUC (Area under the curve)
    • Precision
    • Recall
    • Confusion Matrix (Wahrheitsmatrix)
  • Cross Validation (Kreuzvalidierungsverfahren)
  • Feature Engineering
  • Praxis: Mit Daten vom ersten Tag wählen wir die am besten geeignete Metrik für das Problem aus, suchen das am besten passende Model aus und nutzen Cross Validation für die finale Modellierung. Damit lässt sich die Frage beantworten, was die maximal-beste Performance des Modells ist, das erzielt werden konnte.
  • Diskussion

Werden Sie über neue Bewertungen benachrichtigt

Es wurden noch keine Bewertungen geschrieben.

Schreiben Sie eine Bewertung

Haben Sie Erfahrung mit diesem Kurs? Schreiben Sie jetzt eine Bewertung und helfen Sie Anderen dabei die richtige Weiterbildung zu wählen. Als Dankeschön spenden wir € 1,00 an Stiftung Edukans.

Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!

Bitte füllen Sie das Formular so vollständig wie möglich aus

(optional)
(optional)
(optional)
(optional)
(optional)
(optional)

Haben Sie noch Fragen?

(optional)

Anmeldung für Newsletter

Damit Ihnen per E-Mail oder Telefon weitergeholfen werden kann, speichern wir Ihre Daten.
Mehr Informationen dazu finden Sie in unseren Datenschutzbestimmungen.