Data Engineering on Google Cloud Platform (DEGCP) Online

Dauer
Ausführung
Online
Startdatum und Ort

Data Engineering on Google Cloud Platform (DEGCP) Online

Fast Lane Institute for Knowledge Transfer GmbH
Logo von Fast Lane Institute for Knowledge Transfer GmbH
Bewertung: starstarstarstarstar_half 8,9 Bildungsangebote von Fast Lane Institute for Knowledge Transfer GmbH haben eine durchschnittliche Bewertung von 8,9 (aus 32 Bewertungen)

Tipp: Haben Sie Fragen? Für weitere Details einfach auf "Kostenlose Informationen" klicken.

Startdaten und Startorte

computer Online: Online Training
4. Nov 2024 bis 7. Nov 2024
computer Online: Online Training
14. Jan 2025 bis 17. Jan 2025
computer Online: Online Training
1. Apr 2025 bis 4. Apr 2025
computer Online: Online Training
18. Aug 2025 bis 21. Aug 2025

Beschreibung

Kursinhalt

  • Module 1: Introduction to Data Engineering
  • Module 2: Building a Data Lake
  • Module 3: Building a Data Warehouse
  • Module 4: Introduction to Building Batch Data Pipelines,
  • Module 5: Executing Spark on Cloud Dataproc
  • Module 6: Serverless Data Processing with Cloud Dataflow
  • Module 7: Manage Data Pipelines with Cloud Data Fusion and Cloud Composer
  • Module 8: Introduction to Processing Streaming Data
  • Module 9: Serverless Messaging with Cloud Pub/Sub
  • Module 10: Cloud Dataflow Streaming Features
  • Module 11: High-Throughput BigQuery and Bigtable Streaming Features
  • Module 12: Advanced BigQuery Functionality and Performance
  • Module 13: Introduction to Analytics and AI
  • Module 14: Prebuilt ML mode…

Gesamte Beschreibung lesen

Frequently asked questions

Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!

Noch nicht den perfekten Kurs gefunden? Verwandte Themen: Data Engineering, Google Cloud Platform, Microsoft SQL Server, SQL & MySQL und Big Data.

Kursinhalt

  • Module 1: Introduction to Data Engineering
  • Module 2: Building a Data Lake
  • Module 3: Building a Data Warehouse
  • Module 4: Introduction to Building Batch Data Pipelines,
  • Module 5: Executing Spark on Cloud Dataproc
  • Module 6: Serverless Data Processing with Cloud Dataflow
  • Module 7: Manage Data Pipelines with Cloud Data Fusion and Cloud Composer
  • Module 8: Introduction to Processing Streaming Data
  • Module 9: Serverless Messaging with Cloud Pub/Sub
  • Module 10: Cloud Dataflow Streaming Features
  • Module 11: High-Throughput BigQuery and Bigtable Streaming Features
  • Module 12: Advanced BigQuery Functionality and Performance
  • Module 13: Introduction to Analytics and AI
  • Module 14: Prebuilt ML model APIs for Unstructured Data
  • Module 15: Big Data Analytics with Cloud AI Platform Notebooks
  • Module 16: Production ML Pipelines with Kubeflow
  • Module 17: Custom Model building with SQL in BigQuery ML
  • Module 18: Custom Model building with Cloud AutoML

Voraussetzungen

Für maximale Lernerfolge sollten die Teilnehmer folgende Voraussetzungen erfüllen:

  • Abgeschlossener Kurs Google Cloud Fundamentals: Big Data and Machine Learning (GCF-BDM) oder gleichwertige Kenntnisse
  • Grundkenntnisse in gängigen Abfragesprachen wie SQL
  • Kenntnisse in Datenmodellierung, Extraktion, Transformation und Ladeaktivitäten
  • Kenntnisse im Entwickeln von Anwendungen mit einer gängigen Programmiersprache wie Python
  • Vertrautheit mit maschinellem Lernen und/oder Statistik

Zielgruppe

Dieser Kurs richtet sich an erfahrene Entwickler, die für die Verwaltung von Big-Data-Transformationen verantwortlich sind, zum Beispiel:

  • Daten extrahieren, laden, transformieren, bereinigen und validieren
  • Pipelines und Architekturen für die Datenverarbeitung entwerfen
  • Modelle für maschinelles Lernen und Statistik erstellen und warten
  • Datasets abfragen, Abfrageergebnisse visualisieren und Berichte erstellen

Detaillierter Kursinhalt

Module 1: Introduction to Data Engineering

  • Explore the role of a data engineer.
  • Analyze data engineering challenges.
  • Intro to BigQuery.
  • Data Lakes and Data Warehouses.
  • Demo: Federated Queries with BigQuery.
  • Transactional Databases vs Data Warehouses.
  • Website Demo: Finding PII in your dataset with DLP API.
  • Partner effectively with other data teams.
  • Manage data access and governance.
  • Build production-ready pipelines.
  • Review GCP customer case study.
  • Lab: Analyzing Data with BigQuery.

Module 2: Building a Data Lake

  • Introduction to Data Lakes.
  • Data Storage and ETL options on GCP.
  • Building a Data Lake using Cloud Storage.
  • Optional Demo: Optimizing cost with Google Cloud Storage classes and Cloud Functions.
  • Securing Cloud Storage.
  • Storing All Sorts of Data Types.
  • Video Demo: Running federated queries on Parquet and ORC files in BigQuery.
  • Cloud SQL as a relational Data Lake.
  • Lab: Loading Taxi Data into Cloud SQL.

Module 3: Building a Data Warehouse

  • The modern data warehouse.
  • Intro to BigQuery.
  • Demo: Query TB+ of data in seconds.
  • Getting Started.
  • Loading Data.
  • Video Demo: Querying Cloud SQL from BigQuery.
  • Lab: Loading Data into BigQuery.
  • Exploring Schemas.
  • Demo: Exploring BigQuery Public Datasets with SQL using INFORMATION_SCHEMA.
  • Schema Design.
  • Nested and Repeated Fields.
  • Demo: Nested and repeated fields in BigQuery.
  • Lab: Working with JSON and Array data in BigQuery.
  • Optimizing with Partitioning and Clustering.
  • Demo: Partitioned and Clustered Tables in BigQuery.
  • Preview: Transforming Batch and Streaming Data.

Module 4: Introduction to Building Batch Data Pipelines,

  • EL, ELT, ETL.
  • Quality considerations.
  • How to carry out operations in BigQuery.
  • Demo: ELT to improve data quality in BigQuery.
  • Shortcomings.
  • ETL to solve data quality issues.

Module 5: Executing Spark on Cloud Dataproc

  • The Hadoop ecosystem.
  • Running Hadoop on Cloud Dataproc.
  • GCS instead of HDFS.
  • Optimizing Dataproc.
  • Lab: Running Apache Spark jobs on Cloud Dataproc.

Module 6: Serverless Data Processing with Cloud Dataflow

  • Cloud Dataflow.
  • Why customers value Dataflow.
  • Dataflow Pipelines.
  • Lab: A Simple Dataflow Pipeline (Python/Java).
  • Lab: MapReduce in Dataflow (Python/Java).
  • Lab: Side Inputs (Python/Java).
  • Dataflow Templates.
  • Dataflow SQL.

Module 7: Manage Data Pipelines with Cloud Data Fusion and Cloud Composer

  • Building Batch Data Pipelines visually with Cloud Data Fusion.
  • Components.
  • UI Overview.
  • Building a Pipeline.
  • Exploring Data using Wrangler.
  • Lab: Building and executing a pipeline graph in Cloud Data Fusion.
  • Orchestrating work between GCP services with Cloud Composer.
  • Apache Airflow Environment.
  • DAGs and Operators.
  • Workflow Scheduling.
  • Optional Long Demo: Event-triggered Loading of data with Cloud Composer, Cloud Functions, Cloud Storage, and BigQuery.
  • Monitoring and Logging.
  • Lab: An Introduction to Cloud Composer.

Module 8: Introduction to Processing Streaming Data

  • Processing Streaming Data.

Module 9: Serverless Messaging with Cloud Pub/Sub

  • Cloud Pub/Sub.
  • Lab: Publish Streaming Data into Pub/Sub.

Module 10: Cloud Dataflow Streaming Features

  • Cloud Dataflow Streaming Features.
  • Lab: Streaming Data Pipelines.

Module 11: High-Throughput BigQuery and Bigtable Streaming Features

  • BigQuery Streaming Features.
  • Lab: Streaming Analytics and Dashboards.
  • Cloud Bigtable.
  • Lab: Streaming Data Pipelines into Bigtable.

Module 12: Advanced BigQuery Functionality and Performance

  • Analytic Window Functions.
  • Using With Clauses.
  • GIS Functions.
  • Demo: Mapping Fastest Growing Zip Codes with BigQuery GeoViz.
  • Performance Considerations.
  • Lab: Optimizing your BigQuery Queries for Performance.
  • Optional Lab: Creating Date-Partitioned Tables in BigQuery.

Module 13: Introduction to Analytics and AI

  • What is AI?.
  • From Ad-hoc Data Analysis to Data Driven Decisions.
  • Options for ML models on GCP.

Module 14: Prebuilt ML model APIs for Unstructured Data

  • Unstructured Data is Hard.
  • ML APIs for Enriching Data.
  • Lab: Using the Natural Language API to Classify Unstructured Text.

Module 15: Big Data Analytics with Cloud AI Platform Notebooks

  • Whats a Notebook.
  • BigQuery Magic and Ties to Pandas.
  • Lab: BigQuery in Jupyter Labs on AI Platform.

Module 16: Production ML Pipelines with Kubeflow

  • Ways to do ML on GCP.
  • Kubeflow.
  • AI Hub.
  • Lab: Running AI models on Kubeflow.

Module 17: Custom Model building with SQL in BigQuery ML

  • BigQuery ML for Quick Model Building.
  • Demo: Train a model with BigQuery ML to predict NYC taxi fares.
  • Supported Models.
  • Lab Option 1: Predict Bike Trip Duration with a Regression Model in BQML.
  • Lab Option 2: Movie Recommendations in BigQuery ML.

Module 18: Custom Model building with Cloud AutoML

  • Why Auto ML?
  • Auto ML Vision.
  • Auto ML NLP.
  • Auto ML Tables.

Werden Sie über neue Bewertungen benachrichtigt

Es wurden noch keine Bewertungen geschrieben.

Schreiben Sie eine Bewertung

Haben Sie Erfahrung mit diesem Kurs? Schreiben Sie jetzt eine Bewertung und helfen Sie Anderen dabei die richtige Weiterbildung zu wählen. Als Dankeschön spenden wir € 1,00 an Stiftung Edukans.

Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!

Bitte füllen Sie das Formular so vollständig wie möglich aus

(optional)
(optional)
(optional)
(optional)
(optional)
(optional)

Haben Sie noch Fragen?

(optional)

Anmeldung für Newsletter

Damit Ihnen per E-Mail oder Telefon weitergeholfen werden kann, speichern wir Ihre Daten.
Mehr Informationen dazu finden Sie in unseren Datenschutzbestimmungen.