AI+ Security Level 1 (AISEC) Online

Dauer
Ausführung
Online
Startdatum und Ort

AI+ Security Level 1 (AISEC) Online

Fast Lane Institute for Knowledge Transfer GmbH
Logo von Fast Lane Institute for Knowledge Transfer GmbH
Bewertung: starstarstarstarstar_half 8,9 Bildungsangebote von Fast Lane Institute for Knowledge Transfer GmbH haben eine durchschnittliche Bewertung von 8,9 (aus 33 Bewertungen)

Tipp: Haben Sie Fragen? Für weitere Details einfach auf "Kostenlose Informationen" klicken.

Startdaten und Startorte
computer Online: Online Training
31. Aug 2026 bis 4. Sep 2026
Beschreibung

Voraussetzungen

  • Basic Python Programming: Familiarity with loops, functions, and variables.
  • Basic Cybersecurity Knowledge: Understanding of CIA triad and common threats (e.g., malware, phishing).
  • Basic Machine Learning Concepts: Awareness of fundamental machine learning concepts, not mandatory.
  • Basic Networking: Understanding of IP addressing and TCP/IP protocols.
  • Linux/Command Line Skills: Ability to navigate and use the CLI effectively.

Zielgruppe

  • Cybersecurity Professionals and Analysts
  • Penetration Testers
  • Security Consultants
  • Incident Responders
  • Security Engineers
  • Threat Hunters
  • Compliance Auditors
  • Network Security Administrators
  • Forensic Analysts
  • IT Professionals and System Admini…

Gesamte Beschreibung lesen

Frequently asked questions

Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!

Noch nicht den perfekten Kurs gefunden? Verwandte Themen: Service-oriented architecture (SOA), Machine Learning, Amazon Web Services (AWS), E-Learning und Server.

Voraussetzungen

  • Basic Python Programming: Familiarity with loops, functions, and variables.
  • Basic Cybersecurity Knowledge: Understanding of CIA triad and common threats (e.g., malware, phishing).
  • Basic Machine Learning Concepts: Awareness of fundamental machine learning concepts, not mandatory.
  • Basic Networking: Understanding of IP addressing and TCP/IP protocols.
  • Linux/Command Line Skills: Ability to navigate and use the CLI effectively.

Zielgruppe

  • Cybersecurity Professionals and Analysts
  • Penetration Testers
  • Security Consultants
  • Incident Responders
  • Security Engineers
  • Threat Hunters
  • Compliance Auditors
  • Network Security Administrators
  • Forensic Analysts
  • IT Professionals and System Administrators
  • Risk Management Specialists
  • Business Leaders and Decision Makers
  • Software Developers

Detaillierter Kursinhalt

Module 1: Introduction to Cybersecurity

  • 1.1 Definition and Scope of Cybersecurity
  • 1.2 Key Cybersecurity Concepts
  • 1.3 CIA Triad (Confidentiality, Integrity, Availability)
  • 1.4 Cybersecurity Frameworks and Standards (NIST, ISO/IEC 27001)
  • 1.5 Cyber Security Laws and Regulations (e.g., GDPR, HIPAA)
  • 1.6 Importance of Cybersecurity in Modern Enterprises
  • 1.7 Careers in Cyber Security

Module 2: Operating System Fundamentals

  • 2.1 Core OS Functions (Memory Management, Process Management)
  • 2.2 User Accounts and Privileges
  • 2.3 Access Control Mechanisms (ACLs, DAC, MAC)
  • 2.4 OS Security Features and Configurations
  • 2.5 Hardening OS Security (Patching, Disabling Unnecessary Services)
  • 2.6 Virtualization and Containerization Security Considerations
  • 2.7 Secure Boot and Secure Remote Access
  • 2.8 OS Vulnerabilities and Mitigations

Module 3: Networking Fundamentals

  • 3.1 Network Topologies and Protocols (TCP/IP, OSI Model)
  • 3.2 Network Devices and Their Roles (Routers, Switches, Firewalls)
  • 3.3 Network Security Devices (Firewalls, IDS.IPS)
  • 3.4 Network Segmentation and Zoning
  • 3.5 Wireless Network Security (WPA2, Open WEP vulnerabilities)
  • 3.6 VPN Technologies and Use Cases
  • 3.7 Network Address Translation (NAT)
  • 3.8 Basic Network Troubleshooting

Module 4: Threats, Vulnerabilities, and Exploits

  • 4.1 Types of Threat Actors (Script Kiddies, Hacktivists, Nation-States)
  • 4..2 Threat Hunting Methodologies using AI
  • 4.3 AI Tools for Threat Hunting (SIEM, IDS/IPS)
  • 4.4 Open-Source Intelligence (OSINT) Techniques
  • 4.5 Introduction to Vulnerabilities
  • 4.6 Software Development Life Cycle (SDLC) and Security Integration with AI
  • 4.7 Zero-Day Attacks and Patch Management Strategies
  • 4.8 Vulnerability Scanning Tools and Techniques using AI
  • 4.9 Exploiting Vulnerabilities (Hands-on Labs)

Module 5: Understanding of AI and ML

  • 5.1 An Introduction to AI
  • 5.2 Types of Applications of AI
  • 5.3 Identifying and Mitigating Risks in Real-Life
  • 5.4 Building a Resilient and Adaptive Security Infrastructure with AI
  • 5.5 Enhancing Digital Defenses using CSAI
  • 5.6 Application of Machine Learning in Cybersecurity
  • 5.7 Safeguarding Sensitive Data and Systems Against Diverse Cyber Threats
  • 5.8 Threat Intelligence and Threat Hunting Concepts

Module 6: Python Programming Fundamentals

  • 6.1 Introduction to Python Programming
  • 6.2 Understanding of Python Libraries
  • 6.3 Python Programming Language for Cybersecurity Applications
  • 6.4 AI Scripting for Automation in Cybersecurity Tasks
  • 6.5 Data Analysis and Manipulation Using Python
  • 6.6 Developing Security Tools with Python

Module 7: Applications of AI in Cybersecurity

  • 7.1 Understanding the Application of Machine Learning in Cybersecurity
  • 7.2 Anomaly Detection to Behavior Analysis
  • 7.3 Dynamic and Proactive Defense using Machine Learning
  • 7.4 Utilizing Machine Learning for Email Threat Detection
  • 7.5 Enhancing Phishing Detection with AI
  • 7.6 Autonomous Identification and Thwarting of Email Threats
  • 7.7 Employing Advanced Algorithms and AI in Malware Threat Detection
  • 7.8 Identifying, Analyzing, and Mitigating Malicious Software
  • 7.9 Enhancing User Authentication with AI Techniques
  • 7.10 Penetration Testing with AI

Module 8: Incident Response and Disaster Recovery

  • 8.1 Incident Response Process (Identification, Containment, Eradication, Recovery)
  • 8.2 Incident Response Lifecycle
  • 8.3 Preparing an Incident Response Plan
  • 8.4 Detecting and Analyzing Incidents
  • 8.5 Containment, Eradication, and Recovery
  • 8.6 Post-Incident Activities
  • 8.7 Digital Forensics and Evidence Collection
  • 8.8 Disaster Recovery Planning (Backups, Business Continuity)
  • 8.9 Penetration Testing and Vulnerability Assessments
  • 8.10 Legal and Regulatory Considerations of Security Incidents

Module 9: Open Source Security Tools

  • 9.1 Introduction to Open-Source Security Tools
  • 9.2 Popular Open Source Security Tools
  • 9.3 Benefits and Challenges of Using Open-Source Tools
  • 9.4 Implementing Open Source Solution in Organizations
  • 9.5 Community Support Resources
  • 9.6 Network Security Scanning and Vulnerability Detection
  • 9.7 Security Information and Event Management (SIEM) Tools (Open-Source options)
  • 9.8 Open-Source Packet Filtering Firewalls
  • 9.9 Password Hashing and Cracking Tools (Ethical Use)
  • 9.10 Open-Source Forensics Tools

Module 10: Securing the Future

  • 10.1 Emerging Cyber Threats and Trends
  • 10.2 Artificial Intelligence and Machine Learning in Cybersecurity
  • 10.3 Blockchain for Security
  • 10.4 Internet of Things (IoT) Security
  • 10.5 Cloud Security
  • 10.6 Quantum Computing and its Impact on Security
  • 10.7 Cybersecurity in Critical Infrastructure
  • 10.8 Cryptography and Secure Hashing
  • 10.9 Cyber Security Awareness and Training for Users
  • 10.10 Continuous Security Monitoring and Improvement

Capstone Project

  • 11.1 Introduction
  • 11.2 Use Cases: AI in Cybersecurity
  • 11.3 Outcome Presentation
Werden Sie über neue Bewertungen benachrichtigt
Es wurden noch keine Bewertungen geschrieben.
Schreiben Sie eine Bewertung
Haben Sie Erfahrung mit diesem Kurs? Schreiben Sie jetzt eine Bewertung und helfen Sie Anderen dabei die richtige Weiterbildung zu wählen. Als Dankeschön spenden wir € 1,00 an Stiftung Edukans.

Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!

Bitte füllen Sie das Formular so vollständig wie möglich aus.

(optional)
(optional)
(optional)
(optional)
(optional)
(optional)

Anmeldung für Newsletter

Damit Ihnen per E-Mail oder Telefon weitergeholfen werden kann, speichern wir Ihre Daten und teilen sie ggf. mit Fast Lane Institute for Knowledge Transfer GmbH. Mehr Informationen dazu finden Sie in unseren Datenschutzbestimmungen.