AI+ Prompt Engineer Level 1 (AIPE)

Dauer
Ausführung
Vor Ort
Startdatum und Ort

AI+ Prompt Engineer Level 1 (AIPE)

Fast Lane Institute for Knowledge Transfer GmbH
Logo von Fast Lane Institute for Knowledge Transfer GmbH
Bewertung: starstarstarstarstar_half 8,9 Bildungsangebote von Fast Lane Institute for Knowledge Transfer GmbH haben eine durchschnittliche Bewertung von 8,9 (aus 33 Bewertungen)

Tipp: Haben Sie Fragen? Für weitere Details einfach auf "Kostenlose Informationen" klicken.

Startdaten und Startorte
placeMünchen
30. Jan 2026
placeBerlin
24. Apr 2026
placeFrankfurt
28. Aug 2026
placeHamburg
27. Nov 2026
Beschreibung

Voraussetzungen

  • Understand AI basics and how AI is used – no technical skills required
  • Willingness to think creatively to generate ideas and use AI tools effectively

Zielgruppe

  • Business Professionals
  • AI Enthusiasts and Beginners
  • Content Creators
  • Digital Marketers
  • Developers
  • Aspiring AI Engineers

Detaillierter Kursinhalt

Module 1: Foundations of Artificial Intelligence (AI) and Prompt Engineering

  • 1.1 Introduction to Artificial Intelligence
  • 1.2 History of AI
  • 1.3 Basics of Machine Learning
  • 1.4 Deep Learning and Neural Networks
  • 1.5 Natural Language Processing (NLP)
  • 1.6 Prompt Engineering Fundamentals

Module 2: Principles of Effective Prompting

  • 2.1 Introduction to the Principles of Ef…

Gesamte Beschreibung lesen

Frequently asked questions

Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!

Noch nicht den perfekten Kurs gefunden? Verwandte Themen: Künstliche Intelligenz, Digitale Transformation, Virtual Reality, Deep Learning und Englisch.

Voraussetzungen

  • Understand AI basics and how AI is used – no technical skills required
  • Willingness to think creatively to generate ideas and use AI tools effectively

Zielgruppe

  • Business Professionals
  • AI Enthusiasts and Beginners
  • Content Creators
  • Digital Marketers
  • Developers
  • Aspiring AI Engineers

Detaillierter Kursinhalt

Module 1: Foundations of Artificial Intelligence (AI) and Prompt Engineering

  • 1.1 Introduction to Artificial Intelligence
  • 1.2 History of AI
  • 1.3 Basics of Machine Learning
  • 1.4 Deep Learning and Neural Networks
  • 1.5 Natural Language Processing (NLP)
  • 1.6 Prompt Engineering Fundamentals

Module 2: Principles of Effective Prompting

  • 2.1 Introduction to the Principles of Effective Prompting
  • 2.2 Giving Direction
  • 2.3 Formatting Responses
  • 2.4 Providing Examples
  • 2.5 Evaluating Quality
  • 2.6 Dividing Labor
  • 2.7 Applying The Five Principles
  • 2.8 Fixing Failing Prompts

Module 3: Introduction to AI Tools and Models

  • 3.1 Understanding AI Tools and Models
  • 3.2 Deep Dive into ChatGPT
  • 3.3 Exploring GPT-4
  • 3.4 Revolutionizing Art with DALL-E 2
  • 3.5 Introduction to Emerging Tools using GPT
  • 3.6 Specialized AI Models
  • 3.7 Advanced AI Models
  • 3.8 Google AI Innovations
  • 3.9 Comparative Analysis of AI Tools
  • 3.10 Practical Application Scenarios
  • 3.11 Harnessing AI’s Potential

Module 4: Mastering Prompt Engineering Techniques

  • 4.1 Zero-Shot Prompting
  • 4.2 Few-Shot Prompting
  • 4.3 Chain-of-Thought Prompting
  • 4.4 Ensuring Self-Consistency in AI Responses
  • 4.5 Generate Knowledge Prompting
  • 4.6 Prompt Chaining
  • 4.7 Tree of Thoughts: Exploring Multiple Solutions
  • 4.8 Retrieval Augmented Generation
  • 4.9 Graph Prompting and Advanced Data Interpretation
  • 4.10 Application in Practice: Real-Life Scenarios
  • 4.11 Practical Exercises

Module 5: Mastering Image Model Techniques

  • 5.1 Introduction to Image Models
  • 5.2 Understanding Image Generation
  • 5.3 Style Modifiers and Quality Boosters in Image Generation
  • 5.4 Advanced Prompt Engineering in AI Image Generation
  • 5.5 Prompt Rewriting for AI Image Models
  • 5.6 Image Modification Techniques: Inpainting and Outpainting
  • 5.7 Realistic Image Generation
  • 5.8 Realistic Models and Consistent Characters
  • 5.9 Practical Application of Image Model Techniques

Module 6: Project-Based Learning Session

  • 6.1 Introduction to Project-Based Learning in AI
  • 6.2 Selecting a Project Theme
  • 6.3 Project Planning and Design in AI
  • 6.4 AI Implementation and Prompt Engineering
  • 6.5 Integrating Text and Image Models
  • 6.6 Evaluation and Integration in AI Projects
  • 6.7 Engaging and Effective Project Presentation
  • 6.8 Guided Project Example

Module 7: Ethical Considerations and Future of AI

  • 7.1 Introduction to AI Ethics
  • 7.2 Bias and Fairness in AI Models
  • 7.3 Privacy and Data Security
  • 7.4 The Imperative for Transparency in AI Operations
  • 7.5 Sustainable AI Development: An Imperative for the Future
  • 7.6 Ethical Scenario Analysis in AI: Navigating the Complex Landscape
  • 7.7 Navigating the Complex Landscape of AI Regulations and Governance
  • 7.8 Navigating the Regulatory Landscape: A Guide for AI Practitioners
  • 7.9 Ethical Frameworks and Guidelines in AI Development
Werden Sie über neue Bewertungen benachrichtigt
Es wurden noch keine Bewertungen geschrieben.
Schreiben Sie eine Bewertung
Haben Sie Erfahrung mit diesem Kurs? Schreiben Sie jetzt eine Bewertung und helfen Sie Anderen dabei die richtige Weiterbildung zu wählen. Als Dankeschön spenden wir € 1,00 an Stiftung Edukans.

Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!

Bitte füllen Sie das Formular so vollständig wie möglich aus.

(optional)
(optional)
(optional)
(optional)
(optional)
(optional)
(optional)

Anmeldung für Newsletter

Damit Ihnen per E-Mail oder Telefon weitergeholfen werden kann, speichern wir Ihre Daten und teilen sie ggf. mit Fast Lane Institute for Knowledge Transfer GmbH. Mehr Informationen dazu finden Sie in unseren Datenschutzbestimmungen.