Digital Signal Processing

Methode

Digital Signal Processing

Coursera (CC)
Logo von Coursera (CC)
Bewertung: starstarstarstar_halfstar_border 7,2 Bildungsangebote von Coursera (CC) haben eine durchschnittliche Bewertung von 7,2 (aus 6 Bewertungen)

Tipp: Haben Sie Fragen? Für weitere Details einfach auf "Kostenlose Informationen" klicken.

Beschreibung

When you enroll for courses through Coursera you get to choose for a paid plan or for a free plan

  • Free plan: No certicification and/or audit only. You will have access to all course materials except graded items.
  • Paid plan: Commit to earning a Certificate—it's a trusted, shareable way to showcase your new skills.

About this course: Digital Signal Processing is the branch of engineering that, in the space of just a few decades, has enabled unprecedented levels of interpersonal communication and of on-demand entertainment. By reworking the principles of electronics, telecommunication and computer science into a unifying paradigm, DSP is a the heart of the digital revolution that brought us CDs, DVDs, MP3 players, mobile phones and countless other devices. The goal, for students of this course, will be to learn the fundamentals of Digital Signal Processing from the ground up. Starting from the basic definition of a discrete-time signal, we will work our way through Fourier analysis, filter design, …

Gesamte Beschreibung lesen

Frequently asked questions

Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!

Noch nicht den perfekten Kurs gefunden? Verwandte Themen: Scala, Web 2.0, Webdesign, Webmaster und Barrierefreies Webdesign.

When you enroll for courses through Coursera you get to choose for a paid plan or for a free plan

  • Free plan: No certicification and/or audit only. You will have access to all course materials except graded items.
  • Paid plan: Commit to earning a Certificate—it's a trusted, shareable way to showcase your new skills.

About this course: Digital Signal Processing is the branch of engineering that, in the space of just a few decades, has enabled unprecedented levels of interpersonal communication and of on-demand entertainment. By reworking the principles of electronics, telecommunication and computer science into a unifying paradigm, DSP is a the heart of the digital revolution that brought us CDs, DVDs, MP3 players, mobile phones and countless other devices. The goal, for students of this course, will be to learn the fundamentals of Digital Signal Processing from the ground up. Starting from the basic definition of a discrete-time signal, we will work our way through Fourier analysis, filter design, sampling, interpolation and quantization to build a DSP toolset complete enough to analyze a practical communication system in detail. Hands-on examples and demonstration will be routinely used to close the gap between theory and practice. To make the best of this class, it is recommended that you are proficient in basic calculus and linear algebra; several programming examples will be provided in the form of Python notebooks but you can use your favorite programming language to test the algorithms described in the course.

Who is this class for: This course is primarily designed for STEM undergraduates who have already completed classes in calculus and linear algebra. It is also ideal as a Digital Signal Processing primer for students interested in a mathematically solid introduction to the subject. Note that this class is NOT a hands-on, applied DSP course. While many programming examples are provided, the focus is on the theory and not on the implementation.

Created by:  École Polytechnique Fédérale de Lausanne
  • Taught by:  Paolo Prandoni, Lecturer

    School of Computer and Communication Science
  • Taught by:  Martin Vetterli, Professor

    School of Computer and Communication Sciences
Level Intermediate Commitment 8-10 hours/week Language English How To Pass Pass all graded assignments to complete the course. User Ratings 4.7 stars Average User Rating 4.7See what learners said Coursework

Each course is like an interactive textbook, featuring pre-recorded videos, quizzes and projects.

Help from your peers

Connect with thousands of other learners and debate ideas, discuss course material, and get help mastering concepts.

Certificates

Earn official recognition for your work, and share your success with friends, colleagues, and employers.

École Polytechnique Fédérale de Lausanne

Syllabus


WEEK 1


Module 1: Basics of Digital Signal Processing



7 videos, 7 readings expand


  1. Video: Welcome to the DSP course
  2. Reading: Introduction to Module 1
  3. Reading: Introduction to Lecture 1.1
  4. Video: 1.1.a Introduction to digital signal processing
  5. Reading: Introduction to Lecture 1.2
  6. Video: 1.2.a Discrete-time signals
  7. Reading: Introduction to Lecture 1.3
  8. Video: 1.3.a How your PC plays discrete-time sounds
  9. Video: 1.3.b The Karplus-Strong algorithm
  10. Video: Signal of the Day: Goethe's temperature measurement
  11. Reading: Introduction to Lecture 1.4
  12. Video: 1.4.a Complex exponentials
  13. Reading: Notes and external resources
  14. Notebook: Transoceanic Signal Transmission
  15. Notebook: The Karplus-Strong Algorithm
  16. Reading: Practice homework for Module 1

Graded: Homework for Module 1

WEEK 2


Module 2: Vector Spaces



6 videos, 7 readings expand


  1. Reading: Introduction to Module 2
  2. Reading: Introduction to Lecture 2.1
  3. Video: 2.1.a Signal processing and vector spaces
  4. Video: Signal of the Day: Exoplanet hunting
  5. Reading: Introduction to Lesson 2.2
  6. Video: 2.2.a Vector space
  7. Video: 2.2.b Signal spaces
  8. Reading: Introduction to Lecture 2.3
  9. Video: 2.3.a Bases
  10. Reading: Introduction to Lecture 2.4
  11. Video: 2.4.a Subspace-based approximations
  12. Reading: Notes and external resources
  13. Notebook: Haar Bases for Image Compression
  14. Reading: Practice homework for Module 2

Graded: Homework for Module 2

WEEK 3


Module 3: Part 1 - Basics of Fourier Analysis



14 videos, 11 readings expand


  1. Reading: Introduction to Module 3
  2. Reading: Introduction to Lesson 3.1
  3. Video: 3.1.a The frequency domain
  4. Video: 3.1.b The DFT as a change of basis
  5. Reading: Summary of Lesson 3.1
  6. Reading: Introduction to Lesson 3.2
  7. Video: 3.2.a DFT definition
  8. Video: 3.2.b Examples of DFT calculation
  9. Video: 3.2.c Interpreting a DFT plot
  10. Reading: Summary of Lesson 3.2
  11. Reading: Introduction to Lesson 3.3
  12. Video: 3.3.a DFT analysis
  13. Video: 3.3.b DFT example - analysis of musical instruments
  14. Video: 3.3.c DFT synthesis
  15. Video: 3.3.d DFT example - tide prediction in Venice
  16. Video: 3.3.e DFT example - MP3 compression
  17. Video: Signal of the Day: The first man-made signal from outer space
  18. Reading: Summary of Lesson 3.3
  19. Reading: Real-valued Transforms
  20. Reading: Introduction to Lesson 3.4
  21. Video: 3.4.a The short-time Fourier transform
  22. Video: 3.4.b The spectrogram
  23. Video: 3.4.c Time-frequency tiling
  24. Reading: Summary of Lesson 3.4
  25. Notebook: How to Plot the DFT
  26. Notebook: DFT and Numerical Precision
  27. Notebook: Dial Tones
  28. Reading: Practice homework for Module 3 Part 1

Graded: Homework for Module 3 Part 1

WEEK 4


Module 3: Part 2 - Advanced Fourier Analysis



10 videos, 7 readings expand


  1. Reading: Introduction to Lesson 3.5
  2. Video: 3.5.a Discrete Fourier series
  3. Video: 3.5.b Karplus-Strong revisited and DFS
  4. Reading: Summary of Lesson 3.5
  5. Reading: Introduction to Lesson 3.6
  6. Video: 3.6.a Karplus-Strong revisited and the DTFT
  7. Video: 3.6.b Existence and properties of the DTFT
  8. Video: 3.6.c The DTFT as a change of basis
  9. Reading: Summary of Lesson 3.6
  10. Reading: Introduction to Lesson 3.7
  11. Video: 3.7.a Sinusoidal modulation
  12. Video: 3.7.b Tuning a guitar
  13. Video: Signal of the Day: Tristan Chord
  14. Reading: Notes and external ressources
  15. Video: 3.8* Relationship between transforms
  16. Video: 3.9* The fast Fourier transform
  17. Notebook: Can You Hear the Phase of a Sound?
  18. Notebook: Audio Frequency Beatings
  19. Reading: Practice homework for Module 3 Part 2

Graded: Homework for Module 3 Part 2

WEEK 5


Module 4: Part 1 Introduction to Filtering



14 videos, 12 readings expand


  1. Reading: Introduction to Module 4
  2. Reading: Introduction to Lesson 4.1
  3. Video: 4.1.a Linear time-invariant filters
  4. Video: 4.1.b Convolution
  5. Video: SOTD: Can one hear the shape of a room?
  6. Reading: Summary of Lesson 4.1
  7. Reading: Introduction to Lesson 4.2
  8. Video: 4.2.a The moving average filter
  9. Video: 4.2.b The leaky integrator
  10. Reading: Summary of Lesson 4.2
  11. Reading: Introduction to Lesson 4.3
  12. Video: 4.3.a Filter classification in the time domain
  13. Video: 4.3.b Filter stability
  14. Reading: Summary of Lesson 4.3
  15. Reading: Introduction to Lesson 4.4
  16. Video: 4.4.a The convolution theorem
  17. Video: 4.4.b Examples of frequency response
  18. Reading: Summary of Lesson 4.4
  19. Reading: Introduction to Lesson 4.5
  20. Video: 4.5.a Filter classification in the frequency domain
  21. Video: 4.5.b The ideal lowpass filter
  22. Video: 4.5.c Ideal filters derived from the ideal lowpass filter
  23. Video: 4.5.d Demodulation revisited
  24. Reading: Summary to Lesson 4.5
  25. Reading: Practice homework for Module 4 Part 1
  26. Video: MP3 Encoder
  27. Ungraded Programming: MP3 encoder - Spectrum estimation

Graded: Homework for Module 4 Part 1

WEEK 6


Module 4: Part 2 Filter Design



14 videos, 10 readings expand


  1. Reading: Introduction to Lesson 4.6
  2. Video: 4.6.a Impulse truncation and Gibbs phenomenon
  3. Video: 4.6.b Window method
  4. Video: 4.6.c Frequency sampling
  5. Video: Signal of the Day: Resolution and Space Exploration
  6. Reading: Summary of Lesson 4.6
  7. Reading: Introduction to Lesson 4.7
  8. Video: 4.7.a The z-transform
  9. Video: 4.7.b Region of convergence and stability
  10. Reading: Summary of Lesson 4.7
  11. Reading: Introduction to Lesson 4.8
  12. Video: 4.8.a Intuitive IIR designs
  13. Reading: Summary of Lesson 4.8
  14. Reading: Introduction to Lesson 4.9
  15. Video: 4.9.a Filter specifications
  16. Video: 4.9.b IIR design
  17. Video: 4.9.c FIR design
  18. Reading: Summary of Lesson 4.9
  19. Reading: Module 4: Notes and external ressources
  20. Video: 4.8.b* Fractional delay and Hilbert filter
  21. Video: 4.10* Implementation of digital filters
  22. Video: 4.11* Real-time processing
  23. Video: 4.12* Dereverberation and echo cancellation
  24. Notebook: Filtering Music
  25. Notebook: FIR Implementation
  26. Notebook: Parks-McClellan FIR Design Algorithm
  27. Notebook: A Taste of Nonlinear Processing (courtesy of the Beatles)
  28. Reading: Practice homework for Module 4 Part 2
  29. Ungraded Programming: MP3 encoder - Prototype filter design

Graded: Homework for Module 4 Part 2

WEEK 7


Module 5: Sampling and Quantization



22 videos, 13 readings expand


  1. Reading: Introduction to Module 5
  2. Reading: Introduction to Lesson 5.1
  3. Video: 5.1.a The continuous-time paradigm
  4. Video: 5.1.b Continuous-time signal processing
  5. Reading: Summary of Lesson 5.1
  6. Reading: Introduction to Lesson 5.2
  7. Video: 5.2.a Polynomial interpolation
  8. Video: 5.2.b Local interpolation
  9. Video: Signal of the Day: Fukushima
  10. Reading: Summary of Lesson 5.2
  11. Reading: Introduction to Lesson 5.3
  12. Video: 5.3.a The spectrum of interpolated signals
  13. Video: 5.3.b The space of bandlimited functions
  14. Video: 5.3.c The sampling theorem
  15. Reading: Summary of Lesson 5.3
  16. Reading: Introduction to Lesson 5.4
  17. Video: 5.4.a Raw sampling
  18. Video: 5.4.b Sinusoidal aliasing
  19. Video: 5.4.c Aliasing for arbitrary spectra
  20. Video: 5.4.d Sampling strategies
  21. Reading: Summary of Lesson 5.4
  22. Reading: Introduction to Lesson 5.5
  23. Video: 5.5.a Stochastic signal processing
  24. Video: 5.5.b Quantization
  25. Video: Signal of the Day: Lehman Brothers
  26. Reading: Summary of Lesson 5.5
  27. Reading: Module 5: Notes and external ressources
  28. Video: 5.5.c* Clipping, saturation and conpanding
  29. Video: 5.6* Practical sampling and interpolation
  30. Video: 5.7* Bandpass sampling
  31. Video: 5.8* Multirate signal processing
  32. Video: 5.9* FIR-based sampling rate conversion
  33. Video: 5.10* Analog-to-digital and digital-to-analog converters
  34. Video: 5.11* Oversampling
  35. Notebook: One-Bit Music
  36. Notebook: The Fukushima Disaster and Banlimited Interpolation
  37. Reading: Practice homework for Module 5
  38. Ungraded Programming: MP3 encoder - Subband filtering

Graded: Homework for Module 5

WEEK 8


Module 6: Digital Communication Systems - Module 7: Image Processing



21 videos, 15 readings expand


  1. Reading: Introduction to Module 6
  2. Reading: Introduction to Lesson 6.1
  3. Video: 6.1.a The success factors for digital communications
  4. Video: 6.1.b The analog channel constraints
  5. Video: 6.1.c The design problem
  6. Video: Signal of the Day: Moire Patterns
  7. Reading: Summary of Lesson 6.1
  8. Reading: Introduction to Lesson 6.2
  9. Video: 6.2.a Upsampling
  10. Video: 6.2.b Fitting the transmitter spectrum
  11. Reading: Summary of Lesson 6.2
  12. Reading: Introduction to Lesson 6.3
  13. Video: 6.3.a Noise and probability of error
  14. Video: 6.3.b PAM and QAM
  15. Reading: Summary of Lesson 6.3
  16. Reading: Introduction to Lesson 6.4
  17. Video: 6.4.a Modulation and demodulation
  18. Video: 6.4.b Design example
  19. Reading: Summary of Lesson 6.4
  20. Reading: Introduction to Lesson 6.5
  21. Video: 6.5.a Receiver design
  22. Video: 6.5.b Delay compensation
  23. Video: 6.5.c Adaptive equalization
  24. Reading: Summary of Lesson 6.5
  25. Reading: Introduction to Lesson 6.6
  26. Video: 6.6.a ADSL design
  27. Video: 6.6.b Discrete multitone modulation
  28. Reading: Summary of Lesson 6.6
  29. Reading: Module 6: Notes and external ressources
  30. Notebook: The Telephone Channel
  31. Notebook: Simple Data Transmission
  32. Reading: Practice homework for Module 6
  33. Ungraded Programming: MP3 encoder - Quantization
  34. Video: 7.1* Introduction to image processing
  35. Video: 7.2* Image manipulations
  36. Video: 7.3* Frequency analysis
  37. Video: 7.4* Image filtering
  38. Video: 7.5* Image compression
  39. Video: 7.6* The JPEG compression algorithm

Graded: Homework for Module 6
Werden Sie über neue Bewertungen benachrichtigt
Es wurden noch keine Bewertungen geschrieben.
Schreiben Sie eine Bewertung
Haben Sie Erfahrung mit diesem Kurs? Schreiben Sie jetzt eine Bewertung und helfen Sie Anderen dabei die richtige Weiterbildung zu wählen. Als Dankeschön spenden wir € 1,00 an Stiftung Edukans.

Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!

Bitte füllen Sie das Formular so vollständig wie möglich aus

(optional)
(optional)
(optional)
(optional)

Haben Sie noch Fragen?

(optional)

Anmeldung für Newsletter

Damit Ihnen per E-Mail oder Telefon weitergeholfen werden kann, speichern wir Ihre Daten.
Mehr Informationen dazu finden Sie in unseren Datenschutzbestimmungen.