Cloud Computing Applications, Part 2: Big Data and Applications in the Cloud
Beschreibung
When you enroll for courses through Coursera you get to choose for a paid plan or for a free plan .
- Free plan: No certicification and/or audit only. You will have access to all course materials except graded items.
- Paid plan: Commit to earning a Certificate—it's a trusted, shareable way to showcase your new skills.
About this course: Welcome to the Cloud Computing Applications course, the second part of a two-course series designed to give you a comprehensive view on the world of Cloud Computing and Big Data! In this second course we continue Cloud Computing Applications by exploring how the Cloud opens up data analytics of huge volumes of data that are static or streamed at high velocity and represent an enormous variety of information. Cloud applications and data analytics represent a disruptive change in the ways that society is informed by, and uses information. We start the first week by introducing some major systems for data analysis including Spark and the major frameworks and distribution…

Frequently asked questions
Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!
When you enroll for courses through Coursera you get to choose for a paid plan or for a free plan .
- Free plan: No certicification and/or audit only. You will have access to all course materials except graded items.
- Paid plan: Commit to earning a Certificate—it's a trusted, shareable way to showcase your new skills.
About this course: Welcome to the Cloud Computing Applications course, the second part of a two-course series designed to give you a comprehensive view on the world of Cloud Computing and Big Data! In this second course we continue Cloud Computing Applications by exploring how the Cloud opens up data analytics of huge volumes of data that are static or streamed at high velocity and represent an enormous variety of information. Cloud applications and data analytics represent a disruptive change in the ways that society is informed by, and uses information. We start the first week by introducing some major systems for data analysis including Spark and the major frameworks and distributions of analytics applications including Hortonworks, Cloudera, and MapR. By the middle of week one we introduce the HDFS distributed and robust file system that is used in many applications like Hadoop and finish week one by exploring the powerful MapReduce programming model and how distributed operating systems like YARN and Mesos support a flexible and scalable environment for Big Data analytics. In week two, our course introduces large scale data storage and the difficulties and problems of consensus in enormous stores that use quantities of processors, memories and disks. We discuss eventual consistency, ACID, and BASE and the consensus algorithms used in data centers including Paxos and Zookeeper. Our course presents Distributed Key-Value Stores and in memory databases like Redis used in data centers for performance. Next we present NOSQL Databases. We visit HBase, the scalable, low latency database that supports database operations in applications that use Hadoop. Then again we show how Spark SQL can program SQL queries on huge data. We finish up week two with a presentation on Distributed Publish/Subscribe systems using Kafka, a distributed log messaging system that is finding wide use in connecting Big Data and streaming applications together to form complex systems. Week three moves to fast data real-time streaming and introduces Storm technology that is used widely in industries such as Yahoo. We continue with Spark Streaming, Lambda and Kappa architectures, and a presentation of the Streaming Ecosystem. Week four focuses on Graph Processing, Machine Learning, and Deep Learning. We introduce the ideas of graph processing and present Pregel, Giraph, and Spark GraphX. Then we move to machine learning with examples from Mahout and Spark. Kmeans, Naive Bayes, and fpm are given as examples. Spark ML and Mllib continue the theme of programmability and application construction. The last topic we cover in week four introduces Deep Learning technologies including Theano, Tensor Flow, CNTK, MXnet, and Caffe on Spark.
Who is this class for: This course is intended for practitioners. We introduce a wide range of Big Data technologies and frameworks that are very commonly used across computer industry. We assume you are familiar with some programming language (such as Python or Java), and are now interested to take your knowledge to the next step by leveraging "frameworks" that do much of the heavy lifting involved in distributed Big Data systems. Most of the code snippets introduced in the lectures can be read as pseudocode.
Created by: University of Illinois at Urbana-Champaign-
Taught by: Reza Farivar, Data Engineering Manager at Capital One, Adjunct Research Assistant Professor of Computer Science
Department of Computer Science -
Taught by: Roy H. Campbell, Professor of Computer Science
Department of Computer Science
Каждый курс — это интерактивный учебник, который содержит видеоматериалы, тесты и проекты.
Помощь сокурсниковОбщайтесь с тысячами других учащихся: обсуждайте идеи, материалы курса и помогайте друг другу осваивать новые понятия.
СертификатыПолучите документы о прохождении курсов и поделитесь своим успехом с друзьями, коллегами и работодателями.
University of Illinois at Urbana-Champaign The University of Illinois at Urbana-Champaign is a world leader in research, teaching and public engagement, distinguished by the breadth of its programs, broad academic excellence, and internationally renowned faculty and alumni. Illinois serves the world by creating knowledge, preparing students for lives of impact, and finding solutions to critical societal needs.Syllabus
WEEK 1
Course Orientation
You will become familiar with the course, your classmates, and our learning environment. The orientation will also help you obtain the technical skills required for the course.
1 video, 4 readings, 1 practice quiz expand
- Video: Welcome to Cloud Applications, Part 2!
- Материал для самостоятельного изучения: Syllabus
- Материал для самостоятельного изучения: About the Discussion Forums
- Тренировочный тест: Orientation Quiz
- Материал для самостоятельного изучения: Updating Your Profile
- Вопрос для обсуждения: Getting to Know Your Classmates
- Материал для самостоятельного изучения: Social Media
Module 1: Spark, Hortonworks, HDFS, CAP
In Module 1, we introduce you to the world of Big Data applications. We start by introducing you to Apache Spark, a common framework used for many different tasks throughout the course. We then introduce some Big Data distro packages, the HDFS file system, and finally the idea of batch-based Big Data processing using the MapReduce programming paradigm.
13 videos, 1 reading expand
- Материал для самостоятельного изучения: Module 1 Overview
- Video: 1.1.1 Motivation for Spark
- Video: 1.1.2 Apache Spark
- Video: 1.1.3 Spark Example: Log Mining
- Video: 1.1.4 Spark Example: Logistic Regression
- Video: 1.1.5 RDD Fault Tolerance
- Video: 1.1.6 Interactive Spark
- Video: 1.1.7 Spark Implementation
- Video: 1.2.1 Introduction to Distros
- Video: 1.2.2 Hortonworks
- Video: 1.2.3 Cloudera CDH
- Video: 1.2.4 MapR Distro
- Video: 1.3.1 HDFS Introduction
- Video: 1.3.2 YARN and MESOS
Graded: Module 1 Quiz
WEEK 2
Module 2: Large Scale Data Storage
In this module, you will learn about large scale data storage technologies and frameworks. We start by exploring the challenges of storing large data in distributed systems. We then discuss in-memory key/value storage systems, NoSQL distributed databases, and distributed publish/subscribe queues.
22 videos, 1 reading expand
- Материал для самостоятельного изучения: Module 2 Overview
- Video: Module 2 Introduction
- Video: 2.1.1 Introduction to MapReduce with Spark
- Video: 2.1.2 MapReduce: Motivation
- Video: 2.1.3 MapReduce Programming Model with Spark
- Video: 2.1.4 MapReduce Example: Word Count
- Video: 2.1.5 MapReduce Example: Pi Estimation & Image Smoothing
- Video: 2.1.6 MapReduce Summary
- Video: 2.2.1 Eventual Consistency – Part 1
- Video: 2.2.2 Eventual Consistency – Part 2
- Video: 2.2.3 Consistency Trade-Offs
- Video: 2.2.4 ACID and BASE
- Video: 2.2.5 Zookeeper and Paxos: Introduction
- Video: 2.2.6 Paxos
- Video: 2.2.7 Zookeeper
- Video: 2.3.1 Cassandra Introduction
- Video: 2.3.2 Redis
- Video: 2.3.3 Redis Demonstration
- Video: 2.4.1 HBase Usage API
- Video: 2.4.2 HBase Internals - Part 1
- Video: 2.4.3 HBase Internals - Part 2
- Video: 2.4.4 Spark SQL
- Video: 2.5.1 Kafka
Graded: Module 2 Quiz
WEEK 3
Module 3: Streaming Systems
This module introduces you to real-time streaming systems, also known as Fast Data. We talk about Apache Storm in length, Apache Spark Streaming, and Lambda and Kappa architectures. Finally, we contrast all these technologies as a streaming ecosystem.
18 videos, 1 reading expand
- Материал для самостоятельного изучения: Module 3 Overview
- Video: Module 3 Introduction
- Video: 3.1.1 Streaming Introduction
- Video: 3.1.2 "Big Data Pipelines: The Rise of Real-Time"
- Video: 3.1.3 Storm Introduction: Protocol Buffers & Thrift
- Video: 3.1.4 A Storm Word Count Example
- Video: 3.1.5 Writing the Storm Word Count Example
- Video: 3.1.6 Storm Usage at Yahoo
- Video: 3.2.1 Anchoring and Spout Replay
- Video: 3.2.2 Trident: Exactly Once Processing
- Video: 3.3.1 Inside Apache Storm
- Video: 3.3.2 The Structure of a Storm Cluster
- Video: 3.3.3 Using Thrift in Storm
- Video: 3.3.4 How Storm Schedulers Work
- Video: 3.3.5 Scaling Storm to 4000 Nodes
- Video: 3.3.6 Q&A with Bobby Evans (Yahoo) on Storm
- Video: 3.4.1 Spark Streaming
- Video: 3.4.2 Lambda and Kappa Architecture
- Video: 3.4.3 Streaming Ecosystem
Graded: Module 3 Quiz
WEEK 4
Module 4: Graph Processing and Machine Learning
In this module, we discuss the applications of Big Data. In particular, we focus on two topics: graph processing, where massive graphs (such as the web graph) are processed for information, and machine learning, where massive amounts of data are used to train models such as clustering algorithms and frequent pattern mining. We also introduce you to deep learning, where large data sets are used to train neural networks with effective results.
18 videos, 1 reading expand
- Материал для самостоятельного изучения: Module 4 Overview
- Video: 4.1.1 Graph Processing
- Video: 4.1.2 Pregel - Part 1
- Video: 4.1.3 Pregel - Part 2
- Video: 4.1.4 Pregel - Part 3
- Video: 4.1.5 Giraph Introduction
- Video: 4.1.6 Giraph Example
- Video: 4.1.7 Spark GraphX
- Video: 4.2.1 Big Data Machine Learning Introduction
- Video: 4.2.2 Mahout: Introduction
- Video: 4.2.3 Mahout kmeans
- Video: 4.2.4 Mahout: Naïve Bayes
- Video: 4.2.5 Mahout: fpm
- Video: 4.2.6 Spark Naïve Bayes
- Video: 4.2.7 Spark fpm
- Video: 4.2.8 Spark ML/MLlib
- Video: 4.2.9 Introduction to Deep Learning
- Video: 4.2.10 Deep Neural Network Systems
- Video: 4.3.1 Closing Remarks
- Вопрос для обсуждения: Final Reflections
Graded: Module 4 Quiz
Werden Sie über neue Bewertungen benachrichtigt
Schreiben Sie eine Bewertung
Haben Sie Erfahrung mit diesem Kurs? Schreiben Sie jetzt eine Bewertung und helfen Sie Anderen dabei die richtige Weiterbildung zu wählen. Als Dankeschön spenden wir € 1,00 an Stiftung Edukans.Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!