Machine Learning Rapid Prototyping with IBM Watson Studio [W7072G]

Methode

Machine Learning Rapid Prototyping with IBM Watson Studio [W7072G]

Global Knowledge Network Netherlands B.V.
Logo von Global Knowledge Network Netherlands B.V.
Bewertung: starstarstarstarstar_border 7,6 Bildungsangebote von Global Knowledge Network Netherlands B.V. haben eine durchschnittliche Bewertung von 7,6 (aus 153 Bewertungen)

Tipp: Haben Sie Fragen? Für weitere Details einfach auf "Kostenlose Informationen" klicken.

Beschreibung

Ontdek de verschillende trainingsmogelijkheden bij Global Knowledge

Online of op locatie er is altijd een vorm die bij je past.

Kies op welke manier jij of je team graag een training wilt volgen. Global Knowledge bied je verschillende trainingsmogelijkheden. Je kunt kiezen uit o.a. klassikaal, Virtueel Klassikaal (online), e-Learning en maatwerk. Met onze Blended oplossing kun je de verschillende trainingsvormen combineren.

OVERVIEW

An emerging trend in AI is the availability of technologies in which automation is used to select a best-fit model, perform feature engineering and improve model performance via hyperparameter optimization. This automation will provide rapid-prototyping of models and allow the Data Scientist to focus their efforts on applying domain knowledge to fine-tune models. This course will take the learner through the creation of an end-to-end automated pipeline built by Watson Studio’s AutoAI experiment tool, explaining the underlying technology at work as developed by IBM Research. The focus will be on working with an auto-generated Python notebook. Learners will be provided with test dat…

Gesamte Beschreibung lesen

Frequently asked questions

Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!

Noch nicht den perfekten Kurs gefunden? Verwandte Themen: IBM Watson, Machine Learning, IBM, Big Data und Microsoft Azure.

Ontdek de verschillende trainingsmogelijkheden bij Global Knowledge

Online of op locatie er is altijd een vorm die bij je past.

Kies op welke manier jij of je team graag een training wilt volgen. Global Knowledge bied je verschillende trainingsmogelijkheden. Je kunt kiezen uit o.a. klassikaal, Virtueel Klassikaal (online), e-Learning en maatwerk. Met onze Blended oplossing kun je de verschillende trainingsvormen combineren.

OVERVIEW

An emerging trend in AI is the availability of technologies in which automation is used to select a best-fit model, perform feature engineering and improve model performance via hyperparameter optimization. This automation will provide rapid-prototyping of models and allow the Data Scientist to focus their efforts on applying domain knowledge to fine-tune models. This course will take the learner through the creation of an end-to-end automated pipeline built by Watson Studio’s AutoAI experiment tool, explaining the underlying technology at work as developed by IBM Research. The focus will be on working with an auto-generated Python notebook. Learners will be provided with test data sets for two use cases.

Purchase this course as part of a subscription

  • IBM Data/AI Individual Subscription (SUBR003G)
  • IBM Digital Learning Subscription — IBM Data/AI Enterprise Subscription (SUBR004G)

OBJECTIVES

  • Building a rapid prototype of Watson Studio AI
  • Automated Data Preparation and Model Selection
  • Automated Feature Engineering and Hyperparameter Optimization
  • Evaluation and Deployment of AutoAI-generated Solutions

CONTENT

Building a rapid prototype of Watson Studio AI

- Describe the benefits of AutoAI for rapid prototyping
- Identify implementations of AutoAI
- Become familiar with the Watson Studio platform
- Build rapid prototypes using Watson Studio AutoAI
- Generate a Python notebook of the prototype with one click

Automated Data Preparation and Model Selection

- Evaluate the data preprocessing steps for the use cases
- Refine data preprocessing using the AutoAI-generated Python notebook
- Examine the model selection outcome for use cases
- Refine the Python notebook to make changes to the selected model

Automated Feature Engineering and Hyperparameter Optimization

- Explain how the Cognito algorithm can save time by automating feature engineering
- Evaluate the automated feature engineering performance for the use cases
- Describe several strategies for HPO in order of increasing sophistication
- Observe how changes to the model hyperparameters in the Python notebook affect the prototype's performance

Evaluation and Deployment of AutoAI-generated Solutions

- Evaluate the prototype for further development or deployment based on calculated performance metrics
- Deploy the prototype using Watson Machine Learning

Werden Sie über neue Bewertungen benachrichtigt

Es wurden noch keine Bewertungen geschrieben.

Schreiben Sie eine Bewertung

Haben Sie Erfahrung mit diesem Kurs? Schreiben Sie jetzt eine Bewertung und helfen Sie Anderen dabei die richtige Weiterbildung zu wählen. Als Dankeschön spenden wir € 1,00 an Stiftung Edukans.

Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!

Bitte füllen Sie das Formular so vollständig wie möglich aus

(optional)
(optional)
(optional)
(optional)

Haben Sie noch Fragen?

(optional)

Anmeldung für Newsletter

Damit Ihnen per E-Mail oder Telefon weitergeholfen werden kann, speichern wir Ihre Daten.
Mehr Informationen dazu finden Sie in unseren Datenschutzbestimmungen.