Implementing a Machine Learning solution with Azure Databricks [M-DP3014]

Dauer
Ausführung
Online
Startdatum und Ort

Implementing a Machine Learning solution with Azure Databricks [M-DP3014]

Global Knowledge Network Netherlands B.V.
Logo von Global Knowledge Network Netherlands B.V.
Bewertung: starstarstarstarstar_border 7,6 Bildungsangebote von Global Knowledge Network Netherlands B.V. haben eine durchschnittliche Bewertung von 7,6 (aus 162 Bewertungen)

Tipp: Haben Sie Fragen? Für weitere Details einfach auf "Kostenlose Informationen" klicken.

Startdaten und Startorte

computer Online: VIRTUAL TRAINING CENTER
4. Sep 2024
Details ansehen
event 4. September 2024, 10:30-18:00, VIRTUAL TRAINING CENTER, NL234644.1
computer Online: VIRTUAL TRAINING CENTER
3. Okt 2024
Details ansehen
event 3. Oktober 2024, 10:30-18:00, VIRTUAL TRAINING CENTER, NL234645.1
computer Online: VIRTUAL TRAINING CENTER
11. Okt 2024
Details ansehen
event 11. Oktober 2024, 10:30-18:00, VIRTUAL TRAINING CENTER, NL231861.1
computer Online: VIRTUAL TRAINING CENTER
6. Nov 2024
Details ansehen
event 6. November 2024, 10:30-18:00, VIRTUAL TRAINING CENTER, NL234646.1
computer Online: VIRTUAL TRAINING CENTER
4. Dez 2024
Details ansehen
event 4. Dezember 2024, 10:30-18:00, VIRTUAL TRAINING CENTER, NL234647.1
computer Online: VIRTUAL TRAINING CENTER
9. Jan 2025
Details ansehen
event 9. Januar 2025, 10:30-18:00, VIRTUAL TRAINING CENTER, NL231862.1

Beschreibung

Ontdek de verschillende trainingsmogelijkheden bij Global Knowledge

Online of op locatie er is altijd een vorm die bij je past.

Kies op welke manier jij of je team graag een training wilt volgen. Global Knowledge bied je verschillende trainingsmogelijkheden. Je kunt kiezen uit o.a. klassikaal, Virtueel Klassikaal (online), e-Learning en maatwerk. Met onze Blended oplossing kun je de verschillende trainingsvormen combineren.

OVERVIEW

Azure Databricks is a cloud-scale platform for data analytics and machine learning. Data scientists and machine learning engineers can use Azure Databricks to implement machine learning solutions at scale.

OBJECTIVES

During this course, you will learn to:

  • Master Azure Databricks & Apache Spark architecture.
  • Manage workspaces & clusters in Databricks.
  • Utilize data storage options like Data Lake Storage, SQL Data Warehouse & Cosmos DB.
  • Preprocess & clean data for machine learning models.
  • Train & evaluate models for classification, regression, & clustering.
  • Leverage AutoML for hyperparameter tuning.
  • Deploy & manage models in production environments.
  • Monitor & debug machine learning pi…

Gesamte Beschreibung lesen

Frequently asked questions

Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!

Noch nicht den perfekten Kurs gefunden? Verwandte Themen: TensorFlow, Machine Learning, Microsoft Azure, Big Data und Data Science.

Ontdek de verschillende trainingsmogelijkheden bij Global Knowledge

Online of op locatie er is altijd een vorm die bij je past.

Kies op welke manier jij of je team graag een training wilt volgen. Global Knowledge bied je verschillende trainingsmogelijkheden. Je kunt kiezen uit o.a. klassikaal, Virtueel Klassikaal (online), e-Learning en maatwerk. Met onze Blended oplossing kun je de verschillende trainingsvormen combineren.

OVERVIEW

Azure Databricks is a cloud-scale platform for data analytics and machine learning. Data scientists and machine learning engineers can use Azure Databricks to implement machine learning solutions at scale.

OBJECTIVES

During this course, you will learn to:

  • Master Azure Databricks & Apache Spark architecture.
  • Manage workspaces & clusters in Databricks.
  • Utilize data storage options like Data Lake Storage, SQL Data Warehouse & Cosmos DB.
  • Preprocess & clean data for machine learning models.
  • Train & evaluate models for classification, regression, & clustering.
  • Leverage AutoML for hyperparameter tuning.
  • Deploy & manage models in production environments.
  • Monitor & debug machine learning pipelines.
  • Apply supervised & unsupervised learning techniques.
  • Understand common machine learning algorithms & applications.
  • Utilize Spark MLlib, TensorFlow, & PyTorch for model development.
  • Perform feature engineering & dimensionality reduction.
  • Implement data splitting, cross-validation, & evaluation techniques.
  • Select & tune hyperparameters for optimal model performance.
  • Interpret model results & explainability.
  • Deploy models as services using MLflow & Databricks Model Serving.
  • Integrate models with web applications & other systems.
  • Monitor & diagnose model performance in production.
  • Understand the business value of machine learning & its applications.
  • Learn best practices for building & deploying machine learning solutions.
  • Prepare for data scientist & machine learning engineer roles in the cloud.

AUDIENCE

This course is destinated to

  • Data Scientists
  • Data Engineers
  • Data Analysts
  • Machine Learning Engineers
  • AI Developers
  • Software Developers
  • Cloud Solution Architects
  • IT Managers and Decision Makers
  • Business Intelligence Developers
  • Anyone interested in learning about implementing machine learning solutions using Azure Databricks.

CONTENT

Module 1: Explore Azure Databricks

Azure Databricks is a cloud service that provides a scalable platform for data analytics using Apache Spark.

  • Provision an Azure Databricks workspace.
  • Identify core workloads and personas for Azure Databricks.
  • Describe key concepts of an Azure Databricks solution.

Module 2: Use Apache Spark in Azure Databricks

Azure Databricks is built on Apache Spark and enables data engineers and analysts to run Spark jobs to transform, analyze and visualize data at scale.

  • Describe key elements of the Apache Spark architecture.
  • Create and configure a Spark cluster.
  • Describe use cases for Spark.
  • Use Spark to process and analyze data stored in files.
  • Use Spark to visualize data.

Module 3: Train a machine learning model in Azure Databricks

Machine learning involves using data to train a predictive model. Azure Databricks support multiple commonly used machine learning frameworks that you can use to train models.

  • Prepare data for machine learning
  • Train a machine learning model
  • Evaluate a machine learning model

Module 4: Use MLflow in Azure Databricks

MLflow is an open source platform for managing the machine learning lifecycle that is natively supported in Azure Databricks.

  • Use MLflow to log parameters, metrics, and other details from experiment runs.
  • Use MLflow to manage and deploy trained models.

Module 5: Tune hyperparameters in Azure Databricks

Tuning hyperparameters is an essential part of machine learning. In Azure Databricks, you can use the Hyperopt library to optimize hyperparameters automatically.

  • Use the Hyperopt library to optimize hyperparameters.
  • Distribute hyperparameter tuning across multiple worker nodes.

Module 6: Use AutoML in Azure Databricks

AutoML in Azure Databricks simplifies the process of building an effective machine learning model for your data.

  • Use the AutoML user interface in Azure Databricks
  • Use the AutoML API in Azure Databricks

Module 7: Train deep learning models in Azure Databricks

Deep learning uses neural networks to train highly effective machine learning models for complex forecasting, computer vision, natural language processing, and other AI workloads.

  • Train a deep learning model in Azure Databricks
  • Distribute deep learning training by using the Horovod library

Werden Sie über neue Bewertungen benachrichtigt

Es wurden noch keine Bewertungen geschrieben.

Schreiben Sie eine Bewertung

Haben Sie Erfahrung mit diesem Kurs? Schreiben Sie jetzt eine Bewertung und helfen Sie Anderen dabei die richtige Weiterbildung zu wählen. Als Dankeschön spenden wir € 1,00 an Stiftung Edukans.

Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!

Bitte füllen Sie das Formular so vollständig wie möglich aus

(optional)
(optional)
(optional)
(optional)
(optional)
(optional)

Haben Sie noch Fragen?

(optional)

Anmeldung für Newsletter

Damit Ihnen per E-Mail oder Telefon weitergeholfen werden kann, speichern wir Ihre Daten.
Mehr Informationen dazu finden Sie in unseren Datenschutzbestimmungen.