Fast Track to Python for Data Science [TTPS4873]
Startdaten und Startorte
placeNieuwegein (Iepenhoeve 5) 12. Okt 2022 bis 14. Okt 2022Details ansehen event 12. Oktober 2022, 09:00-16:30, Nieuwegein (Iepenhoeve 5), NL200262.1 event 13. Oktober 2022, 09:00-16:30, Nieuwegein (Iepenhoeve 5), NL200262.2 event 14. Oktober 2022, 09:00-16:30, Nieuwegein (Iepenhoeve 5), NL200262.3 |
Beschreibung
Ontdek de verschillende trainingsmogelijkheden bij Global Knowledge
Online of op locatie er is altijd een vorm die bij je past.
Kies op welke manier jij of je team graag een training wilt volgen. Global Knowledge bied je verschillende trainingsmogelijkheden. Je kunt kiezen uit o.a. klassikaal, Virtueel Klassikaal (online), e-Learning en maatwerk. Met onze Blended oplossing kun je de verschillende trainingsvormen combineren.
OVERVIEW
Introduction to Python for Data Science is a three-day, hands-on course that introduces data analysts and business analysts to the Python programming language, as it’s often used in Data Science in web notebooks. This goal of this course is to provide students with a baseline understanding of core concepts that can serve as a platform of knowledge to follow up with more in-depth training and real-world practice.
Students will explore basic Python syntax and concepts applicable to using Python to work with data. The course begins with quick introduction to Python, with demonstrations of both script-based and web notebook-based Python, and then dives into the essentials of Python ne…
Frequently asked questions
Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!
Ontdek de verschillende trainingsmogelijkheden bij Global Knowledge
Online of op locatie er is altijd een vorm die bij je past.
Kies op welke manier jij of je team graag een training wilt volgen. Global Knowledge bied je verschillende trainingsmogelijkheden. Je kunt kiezen uit o.a. klassikaal, Virtueel Klassikaal (online), e-Learning en maatwerk. Met onze Blended oplossing kun je de verschillende trainingsvormen combineren.
OVERVIEW
Introduction to Python for Data Science is a three-day, hands-on course that introduces data analysts and business analysts to the Python programming language, as it’s often used in Data Science in web notebooks. This goal of this course is to provide students with a baseline understanding of core concepts that can serve as a platform of knowledge to follow up with more in-depth training and real-world practice.
Students will explore basic Python syntax and concepts
applicable to using Python to work with data. The course
begins with quick introduction to Python, with demonstrations of
both script-based and web notebook-based Python, and then dives
into the essentials of Python necessary to a data scientist.
The tail end of the course explores a quick integration of these
skills with key Data Science libraries including NumPy, Pandas and
Matplotlib. Students will explore the concepts and work with large
data sets in a workshop style lab. This class is hands-on and
includes basic programming labs that introduce students to basic
Python syntax and concepts applicable to using Python to work with
data, AI and machine learning basics.
OBJECTIVES
This course is approximately 50% hands-on, combining expert lecture, real-world demonstrations and group discussions with machine-based practical labs and exercises. Our engaging instructors and mentors are highly experienced practitioners who bring years of current "on-the-job" experience into every classroom. Throughout the hands-on course students, will learn to leverage core Python scripting for data science skills using the most current and efficient skills and techniques.
Working in a hands-on learning environment, guided by our expert team, attendees will learn about and explore:
- How to work with Python interactively in web notebooks
-The essentials of Python scripting
- Key concepts necessary to enter the world of Data Science via
Python
AUDIENCE
This course is geared for data analysts, developers, engineers or anyone tasked with utilizing Python for data analytics tasks.
NEXT STEP
Our core Python, data science and machine learning training courses provide students with a solid foundation for continued learning based on role, goals, or their areas of specialty. Our learning paths offer a wide variety of related follow-on courses such as:
- TTML6802 Machine Learning Essentials with Python (3 days)
- TTPS4876 Next Level Python in Data Science (Intermediate) (5 days)
- Please see the Python Training or Machine Learning Series list for additional topics and titles.
CONTENT
Please note that this list of topics is based on our standard
course offering, evolved from typical industry uses and trends.
We’ll work with you to tune this course and level of coverage to
target the skills you need most. Topics, agenda and labs are
subject to change, and may adjust during live delivery based on
audience needs and skill-level.
1. An Overview of Python
- Why Python?
- Python in the Shell
- Python in Web Notebooks (iPython, Jupyter, Zeppelin)
- Demo: Python, Notebooks, and Data Science
2. Getting Started
- Using variables
- Builtin functions
- Strings
- Numbers
- Converting among types
- Writing to the screen
- Command line parameters
- Running standalone scripts under Unix and Windows
3. Flow Control
- About flow control
- White space
- Conditional expressions
- Relational and Boolean operators
- While loops
- Alternate loop exits
4. Sequences, Arrays, Dictionaries and Sets
- About sequences
- Lists and list methods
- Tuples
- Indexing and slicing
- Iterating through a sequence
- Sequence functions, keywords, and operators
- List comprehensions
- Generator Expressions
- Nested sequences
- Working with Dictionaries
- Working with Sets
5. Working with files
- File overview
- Opening a text file
- Reading a text file
- Writing to a text file
- Reading and writing raw (binary) data
6. Functions
- Defining functions
- Parameters
- Global and local scope
- Nested functions
- Returning values
7. Sorting
- The sorted() function
- Alternate keys
- Lambda functions
- Sorting collections
- Using operator.itemgetter()
- Reverse sorting
8. Errors and Exception Handling
- Syntax errors
- Exceptions
- Using try/catch/else/finally
- Handling multiple exceptions
- Ignoring exceptions
9. Essential Demos
- Importing Modules
- Classes
- Regular Expressions
10. The standard library
- Math functions
- The string module
11. Dates and times
Working with dates and times
- Translating timestamps
- Parsing dates from text
- Formatting dates
- Calendar data
12. numpy
- numpy basics
- Creating arrays
- Indexing and slicing
- Large number sets
- Transforming data
- Advanced tricks
13. Python and Data Science
- Data Science Essentials
- Working with Python in Data Science
14. Working with Pandas
- pandas overview
- Dataframes
- Reading and writing data
- Data alignment and reshaping
- Fancy indexing and slicing
- Merging and joining data sets
- Time Permitting
15. matplotlib
- Creating a basic plot
- Commonly used plots
- Ad hoc data visualization
- Advanced usage
- Exporting images
Werden Sie über neue Bewertungen benachrichtigt
Schreiben Sie eine Bewertung
Haben Sie Erfahrung mit diesem Kurs? Schreiben Sie jetzt eine Bewertung und helfen Sie Anderen dabei die richtige Weiterbildung zu wählen. Als Dankeschön spenden wir € 1,00 an Stiftung Edukans.Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!