Designing and Implementing a Data Science Solution on Azure (DP-100) [M-DP100]

Dauer
Ausführung
Vor Ort, Online
Startdatum und Ort

Designing and Implementing a Data Science Solution on Azure (DP-100) [M-DP100]

Global Knowledge Network Netherlands B.V.
Logo von Global Knowledge Network Netherlands B.V.
Bewertung: starstarstarstarstar_border 7,6 Bildungsangebote von Global Knowledge Network Netherlands B.V. haben eine durchschnittliche Bewertung von 7,6 (aus 162 Bewertungen)

Tipp: Haben Sie Fragen? Für weitere Details einfach auf "Kostenlose Informationen" klicken.

Startdaten und Startorte

computer Online: VIRTUAL TRAINING CENTER
16. Sep 2024 bis 19. Sep 2024
Details ansehen
event 16. September 2024, 10:30-18:00, VIRTUAL TRAINING CENTER, NL227368.1
event 17. September 2024, 10:30-18:00, VIRTUAL TRAINING CENTER, NL227368.2
event 18. September 2024, 10:30-18:00, VIRTUAL TRAINING CENTER, NL227368.3
event 19. September 2024, 10:30-18:00, VIRTUAL TRAINING CENTER, NL227368.4
placeNieuwegein (Iepenhoeve 5)
16. Dez 2024 bis 19. Dez 2024
Details ansehen
event 16. Dezember 2024, 09:00-16:30, Nieuwegein (Iepenhoeve 5), NL227366.1
event 17. Dezember 2024, 09:00-16:30, Nieuwegein (Iepenhoeve 5), NL227366.2
event 18. Dezember 2024, 09:00-16:30, Nieuwegein (Iepenhoeve 5), NL227366.3
event 19. Dezember 2024, 09:00-16:30, Nieuwegein (Iepenhoeve 5), NL227366.4
computer Online: VIRTUAL TRAINING CENTRE
16. Dez 2024 bis 19. Dez 2024
Details ansehen
event 16. Dezember 2024, 09:00-16:30, VIRTUAL TRAINING CENTRE, NL227366V.1
event 17. Dezember 2024, 09:00-16:30, VIRTUAL TRAINING CENTRE, NL227366V.2
event 18. Dezember 2024, 09:00-16:30, VIRTUAL TRAINING CENTRE, NL227366V.3
event 19. Dezember 2024, 09:00-16:30, VIRTUAL TRAINING CENTRE, NL227366V.4
placeNieuwegein (Iepenhoeve 5)
16. Jun 2025 bis 19. Jun 2025
Details ansehen
event 16. Juni 2025, 09:00-16:30, Nieuwegein (Iepenhoeve 5), NL235970.1
event 17. Juni 2025, 09:00-16:30, Nieuwegein (Iepenhoeve 5), NL235970.2
event 18. Juni 2025, 09:00-16:30, Nieuwegein (Iepenhoeve 5), NL235970.3
event 19. Juni 2025, 09:00-16:30, Nieuwegein (Iepenhoeve 5), NL235970.4
computer Online: VIRTUAL TRAINING CENTRE
16. Jun 2025 bis 19. Jun 2025
Details ansehen
event 16. Juni 2025, 09:00-16:30, VIRTUAL TRAINING CENTRE, NL235970V.1
event 17. Juni 2025, 09:00-16:30, VIRTUAL TRAINING CENTRE, NL235970V.2
event 18. Juni 2025, 09:00-16:30, VIRTUAL TRAINING CENTRE, NL235970V.3
event 19. Juni 2025, 09:00-16:30, VIRTUAL TRAINING CENTRE, NL235970V.4

Beschreibung

Ontdek de verschillende trainingsmogelijkheden bij Global Knowledge

Online of op locatie er is altijd een vorm die bij je past.

Kies op welke manier jij of je team graag een training wilt volgen. Global Knowledge bied je verschillende trainingsmogelijkheden. Je kunt kiezen uit o.a. klassikaal, Virtueel Klassikaal (online), e-Learning en maatwerk. Met onze Blended oplossing kun je de verschillende trainingsvormen combineren.

OVERVIEW

Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure.

 

AUDIENCE

This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud.

 

CERTIFICATION

This course helps to prepare for exam DP-100

CONTENT

Module 1: Introduction to Azure Machine Learning

In this module, you…

Gesamte Beschreibung lesen

Frequently asked questions

Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!

Noch nicht den perfekten Kurs gefunden? Verwandte Themen: TensorFlow, Data Science, Microsoft Azure, Big Data und Data Analytics.

Ontdek de verschillende trainingsmogelijkheden bij Global Knowledge

Online of op locatie er is altijd een vorm die bij je past.

Kies op welke manier jij of je team graag een training wilt volgen. Global Knowledge bied je verschillende trainingsmogelijkheden. Je kunt kiezen uit o.a. klassikaal, Virtueel Klassikaal (online), e-Learning en maatwerk. Met onze Blended oplossing kun je de verschillende trainingsvormen combineren.

OVERVIEW

Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure.

 

AUDIENCE

This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud.

 

CERTIFICATION

This course helps to prepare for exam DP-100

CONTENT

Module 1: Introduction to Azure Machine Learning

In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace.

  • Getting Started with Azure Machine Learning
  • Azure Machine Learning Tools

Lab : Creating an Azure Machine Learning Workspace
Lab : Working with Azure Machine Learning Tools

After completing this module, you will be able to

  • Provision an Azure Machine Learning workspace
  • Use tools and code to work with Azure Machine Learning

Module 2: No-Code Machine Learning with Designer

This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume.

  • Training Models with Designer
  • Publishing Models with Designer

Lab : Creating a Training Pipeline with the Azure ML Designer
Lab : Deploying a Service with the Azure ML Designer

After completing this module, you will be able to

  • Use designer to train a machine learning model
  • Deploy a Designer pipeline as a service

Module 3: Running Experiments and Training Models

In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models.

  • Introduction to Experiments
  • Training and Registering Models

Lab : Running Experiments
Lab : Training and Registering Models

After completing this module, you will be able to

  • Run code-based experiments in an Azure Machine Learning workspace
  • Train and register machine learning models

Module 4: Working with Data

Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments.

  • Working with Datastores
  • Working with Datasets

Lab : Working with Datastores
Lab : Working with Datasets

After completing this module, you will be able to

  • Create and consume datastores
  • Create and consume datasets

Module 5: Compute Contexts

One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs.

  • Working with Environments
  • Working with Compute Targets

Lab : Working with Environments
Lab : Working with Compute Targets

After completing this module, you will be able to

  • Create and use environments
  • Create and use compute targets

Module 6: Orchestrating Operations with Pipelines

Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module.

  • Introduction to Pipelines
  • Publishing and Running Pipelines

Lab : Creating a Pipeline
Lab : Publishing a Pipeline

After completing this module, you will be able to

  • Create pipelines to automate machine learning workflows
  • Publish and run pipeline services

Module 7: Deploying and Consuming Models

Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing.

  • Real-time Inferencing
  • Batch Inferencing

Lab : Creating a Real-time Inferencing Service
Lab : Creating a Batch Inferencing Service

After completing this module, you will be able to

  • Publish a model as a real-time inference service
  • Publish a model as a batch inference service

Module 8: Training Optimal Models

By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data.

  • Hyperparameter Tuning
  • Automated Machine Learning

Lab : Tuning Hyperparameters
Lab : Using Automated Machine Learning

After completing this module, you will be able to

  • Optimize hyperparameters for model training
  • Use automated machine learning to find the optimal model for your data

Module 9: Interpreting Models

Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions.

  • Introduction to Model Interpretation
  • using Model Explainers

Lab : Reviewing Automated Machine Learning Explanations
Lab : Interpreting Models

After completing this module, you will be able to

  • Generate model explanations with automated machine learning
  • Use explainers to interpret machine learning models

Module 10: Monitoring Models

After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data.

  • Monitoring Models with Application Insights
  • Monitoring Data Drift

Lab : Monitoring a Model with Application Insights
Lab : Monitoring Data Drift

After completing this module, you will be able to

  • Use Application Insights to monitor a published model
  • Monitor data drift

 

Werden Sie über neue Bewertungen benachrichtigt

Es wurden noch keine Bewertungen geschrieben.

Schreiben Sie eine Bewertung

Haben Sie Erfahrung mit diesem Kurs? Schreiben Sie jetzt eine Bewertung und helfen Sie Anderen dabei die richtige Weiterbildung zu wählen. Als Dankeschön spenden wir € 1,00 an Stiftung Edukans.

Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!

Bitte füllen Sie das Formular so vollständig wie möglich aus

(optional)
(optional)
(optional)
(optional)
(optional)
(optional)

Haben Sie noch Fragen?

(optional)

Anmeldung für Newsletter

Damit Ihnen per E-Mail oder Telefon weitergeholfen werden kann, speichern wir Ihre Daten.
Mehr Informationen dazu finden Sie in unseren Datenschutzbestimmungen.