Data Engineering on Microsoft Azure (DP-203) [M-DP203]

Dauer
Ausführung
Vor Ort, Online
Startdatum und Ort

Data Engineering on Microsoft Azure (DP-203) [M-DP203]

Global Knowledge Network Netherlands B.V.
Logo von Global Knowledge Network Netherlands B.V.
Bewertung: starstarstarstarstar_border 7,6 Bildungsangebote von Global Knowledge Network Netherlands B.V. haben eine durchschnittliche Bewertung von 7,6 (aus 162 Bewertungen)

Tipp: Haben Sie Fragen? Für weitere Details einfach auf "Kostenlose Informationen" klicken.

Startdaten und Startorte

computer Online: VIRTUAL TRAINING CENTER
23. Sep 2024 bis 26. Sep 2024
check_circle Garantierte Durchführung
Details ansehen
event 23. September 2024, 09:30-17:00, VIRTUAL TRAINING CENTER, NL237604.1
event 24. September 2024, 09:30-17:00, VIRTUAL TRAINING CENTER, NL237604.2
event 25. September 2024, 09:30-17:00, VIRTUAL TRAINING CENTER, NL237604.3
event 26. September 2024, 09:30-17:00, VIRTUAL TRAINING CENTER, NL237604.4
computer Online: VIRTUAL TRAINING CENTER
28. Okt 2024 bis 31. Okt 2024
Details ansehen
event 28. Oktober 2024, 09:00-16:30, VIRTUAL TRAINING CENTER, NL227378.1
event 29. Oktober 2024, 09:00-16:30, VIRTUAL TRAINING CENTER, NL227378.2
event 30. Oktober 2024, 09:00-16:30, VIRTUAL TRAINING CENTER, NL227378.3
event 31. Oktober 2024, 09:00-16:30, VIRTUAL TRAINING CENTER, NL227378.4
placeAmsterdam ARISTO (Teleportboulevard 100)
25. Nov 2024 bis 28. Nov 2024
Details ansehen
event 25. November 2024, 09:30-17:00, Amsterdam ARISTO (Teleportboulevard 100), NL227379.1
event 26. November 2024, 09:30-17:00, Amsterdam ARISTO (Teleportboulevard 100), NL227379.2
event 27. November 2024, 09:30-17:00, Amsterdam ARISTO (Teleportboulevard 100), NL227379.3
event 28. November 2024, 09:30-17:00, Amsterdam ARISTO (Teleportboulevard 100), NL227379.4
computer Online: VIRTUAL TRAINING CENTRE
25. Nov 2024 bis 28. Nov 2024
Details ansehen
event 25. November 2024, 09:30-17:00, VIRTUAL TRAINING CENTRE, NL227379V.1
event 26. November 2024, 09:30-17:00, VIRTUAL TRAINING CENTRE, NL227379V.2
event 27. November 2024, 09:30-17:00, VIRTUAL TRAINING CENTRE, NL227379V.3
event 28. November 2024, 09:30-17:00, VIRTUAL TRAINING CENTRE, NL227379V.4
computer Online: VIRTUAL TRAINING CENTER
16. Dez 2024 bis 19. Dez 2024
Details ansehen
event 16. Dezember 2024, 09:00-16:30, VIRTUAL TRAINING CENTER, NL227380.1
event 17. Dezember 2024, 09:00-16:30, VIRTUAL TRAINING CENTER, NL227380.2
event 18. Dezember 2024, 09:00-16:30, VIRTUAL TRAINING CENTER, NL227380.3
event 19. Dezember 2024, 09:00-16:30, VIRTUAL TRAINING CENTER, NL227380.4
placeNieuwegein (Iepenhoeve 5)
13. Jan 2025 bis 16. Jan 2025
Details ansehen
event 13. Januar 2025, 09:00-16:30, Nieuwegein (Iepenhoeve 5), NL231989.1
event 14. Januar 2025, 09:00-16:30, Nieuwegein (Iepenhoeve 5), NL231989.2
event 15. Januar 2025, 09:00-16:30, Nieuwegein (Iepenhoeve 5), NL231989.3
event 16. Januar 2025, 09:00-16:30, Nieuwegein (Iepenhoeve 5), NL231989.4
computer Online: VIRTUAL TRAINING CENTRE
13. Jan 2025 bis 16. Jan 2025
Details ansehen
event 13. Januar 2025, 09:00-16:30, VIRTUAL TRAINING CENTRE, NL231989V.1
event 14. Januar 2025, 09:00-16:30, VIRTUAL TRAINING CENTRE, NL231989V.2
event 15. Januar 2025, 09:00-16:30, VIRTUAL TRAINING CENTRE, NL231989V.3
event 16. Januar 2025, 09:00-16:30, VIRTUAL TRAINING CENTRE, NL231989V.4
placeAmsterdam ARISTO (Teleportboulevard 100)
17. Feb 2025 bis 20. Feb 2025
Details ansehen
event 17. Februar 2025, 09:00-16:30, Amsterdam ARISTO (Teleportboulevard 100), NL235976.1
event 18. Februar 2025, 09:00-16:30, Amsterdam ARISTO (Teleportboulevard 100), NL235976.2
event 19. Februar 2025, 09:00-16:30, Amsterdam ARISTO (Teleportboulevard 100), NL235976.3
event 20. Februar 2025, 09:00-16:30, Amsterdam ARISTO (Teleportboulevard 100), NL235976.4
computer Online: VIRTUAL TRAINING CENTRE
17. Feb 2025 bis 20. Feb 2025
Details ansehen
event 17. Februar 2025, 09:00-16:30, VIRTUAL TRAINING CENTRE, NL235976V.1
event 18. Februar 2025, 09:00-16:30, VIRTUAL TRAINING CENTRE, NL235976V.2
event 19. Februar 2025, 09:00-16:30, VIRTUAL TRAINING CENTRE, NL235976V.3
event 20. Februar 2025, 09:00-16:30, VIRTUAL TRAINING CENTRE, NL235976V.4
placeAmsterdam ARISTO (Teleportboulevard 100)
10. Mär 2025 bis 13. Mär 2025
Details ansehen
event 10. März 2025, 09:00-16:30, Amsterdam ARISTO (Teleportboulevard 100), NL235971.1
event 11. März 2025, 09:00-16:30, Amsterdam ARISTO (Teleportboulevard 100), NL235971.2
event 12. März 2025, 09:00-16:30, Amsterdam ARISTO (Teleportboulevard 100), NL235971.3
event 13. März 2025, 09:00-16:30, Amsterdam ARISTO (Teleportboulevard 100), NL235971.4
computer Online: VIRTUAL TRAINING CENTRE
10. Mär 2025 bis 13. Mär 2025
Details ansehen
event 10. März 2025, 09:00-16:30, VIRTUAL TRAINING CENTRE, NL235971V.1
event 11. März 2025, 09:00-16:30, VIRTUAL TRAINING CENTRE, NL235971V.2
event 12. März 2025, 09:00-16:30, VIRTUAL TRAINING CENTRE, NL235971V.3
event 13. März 2025, 09:00-16:30, VIRTUAL TRAINING CENTRE, NL235971V.4
placeNieuwegein (Iepenhoeve 5)
14. Apr 2025 bis 17. Apr 2025
Details ansehen
event 14. April 2025, 09:00-16:30, Nieuwegein (Iepenhoeve 5), NL235977.1
event 15. April 2025, 09:00-16:30, Nieuwegein (Iepenhoeve 5), NL235977.2
event 16. April 2025, 09:00-16:30, Nieuwegein (Iepenhoeve 5), NL235977.3
event 17. April 2025, 09:00-16:30, Nieuwegein (Iepenhoeve 5), NL235977.4
computer Online: VIRTUAL TRAINING CENTRE
14. Apr 2025 bis 17. Apr 2025
Details ansehen
event 14. April 2025, 09:00-16:30, VIRTUAL TRAINING CENTRE, NL235977V.1
event 15. April 2025, 09:00-16:30, VIRTUAL TRAINING CENTRE, NL235977V.2
event 16. April 2025, 09:00-16:30, VIRTUAL TRAINING CENTRE, NL235977V.3
event 17. April 2025, 09:00-16:30, VIRTUAL TRAINING CENTRE, NL235977V.4
placeNieuwegein (Iepenhoeve 5)
12. Mai 2025 bis 15. Mai 2025
Details ansehen
event 12. Mai 2025, 09:00-16:30, Nieuwegein (Iepenhoeve 5), NL235972.1
event 13. Mai 2025, 09:00-16:30, Nieuwegein (Iepenhoeve 5), NL235972.2
event 14. Mai 2025, 09:00-16:30, Nieuwegein (Iepenhoeve 5), NL235972.3
event 15. Mai 2025, 09:00-16:30, Nieuwegein (Iepenhoeve 5), NL235972.4
computer Online: VIRTUAL TRAINING CENTRE
12. Mai 2025 bis 15. Mai 2025
Details ansehen
event 12. Mai 2025, 09:00-16:30, VIRTUAL TRAINING CENTRE, NL235972V.1
event 13. Mai 2025, 09:00-16:30, VIRTUAL TRAINING CENTRE, NL235972V.2
event 14. Mai 2025, 09:00-16:30, VIRTUAL TRAINING CENTRE, NL235972V.3
event 15. Mai 2025, 09:00-16:30, VIRTUAL TRAINING CENTRE, NL235972V.4
placeNieuwegein (Iepenhoeve 5)
16. Jun 2025 bis 19. Jun 2025
Details ansehen
event 16. Juni 2025, 09:00-16:30, Nieuwegein (Iepenhoeve 5), NL235978.1
event 17. Juni 2025, 09:00-16:30, Nieuwegein (Iepenhoeve 5), NL235978.2
event 18. Juni 2025, 09:00-16:30, Nieuwegein (Iepenhoeve 5), NL235978.3
event 19. Juni 2025, 09:00-16:30, Nieuwegein (Iepenhoeve 5), NL235978.4
computer Online: VIRTUAL TRAINING CENTRE
16. Jun 2025 bis 19. Jun 2025
Details ansehen
event 16. Juni 2025, 09:00-16:30, VIRTUAL TRAINING CENTRE, NL235978V.1
event 17. Juni 2025, 09:00-16:30, VIRTUAL TRAINING CENTRE, NL235978V.2
event 18. Juni 2025, 09:00-16:30, VIRTUAL TRAINING CENTRE, NL235978V.3
event 19. Juni 2025, 09:00-16:30, VIRTUAL TRAINING CENTRE, NL235978V.4
placeNieuwegein (Iepenhoeve 5)
14. Jul 2025 bis 17. Jul 2025
Details ansehen
event 14. Juli 2025, 09:00-16:30, Nieuwegein (Iepenhoeve 5), NL235973.1
event 15. Juli 2025, 09:00-16:30, Nieuwegein (Iepenhoeve 5), NL235973.2
event 16. Juli 2025, 09:00-16:30, Nieuwegein (Iepenhoeve 5), NL235973.3
event 17. Juli 2025, 09:00-16:30, Nieuwegein (Iepenhoeve 5), NL235973.4
computer Online: VIRTUAL TRAINING CENTRE
14. Jul 2025 bis 17. Jul 2025
Details ansehen
event 14. Juli 2025, 09:00-16:30, VIRTUAL TRAINING CENTRE, NL235973V.1
event 15. Juli 2025, 09:00-16:30, VIRTUAL TRAINING CENTRE, NL235973V.2
event 16. Juli 2025, 09:00-16:30, VIRTUAL TRAINING CENTRE, NL235973V.3
event 17. Juli 2025, 09:00-16:30, VIRTUAL TRAINING CENTRE, NL235973V.4
placeNieuwegein (Iepenhoeve 5)
18. Aug 2025 bis 21. Aug 2025
Details ansehen
event 18. August 2025, 09:00-16:30, Nieuwegein (Iepenhoeve 5), NL235979.1
event 19. August 2025, 09:00-16:30, Nieuwegein (Iepenhoeve 5), NL235979.2
event 20. August 2025, 09:00-16:30, Nieuwegein (Iepenhoeve 5), NL235979.3
event 21. August 2025, 09:00-16:30, Nieuwegein (Iepenhoeve 5), NL235979.4

Beschreibung

Ontdek de verschillende trainingsmogelijkheden bij Global Knowledge

Online of op locatie er is altijd een vorm die bij je past.

Kies op welke manier jij of je team graag een training wilt volgen. Global Knowledge bied je verschillende trainingsmogelijkheden. Je kunt kiezen uit o.a. klassikaal, Virtueel Klassikaal (online), e-Learning en maatwerk. Met onze Blended oplossing kun je de verschillende trainingsvormen combineren.

OVERVIEW

In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azure data platform technologies. Students will begin by understanding the core compute and storage technologies that are used to build an analytical solution. They will then explore how to design an analytical serving layers and focus on data engineering considerations for working with source files. The students will learn how to interactively explore data stored in files in a data lake.

They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Syna…

Gesamte Beschreibung lesen

Frequently asked questions

Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!

Noch nicht den perfekten Kurs gefunden? Verwandte Themen: Data Engineering, Microsoft Azure, Microsoft SQL Server, SQL & MySQL und Big Data.

Ontdek de verschillende trainingsmogelijkheden bij Global Knowledge

Online of op locatie er is altijd een vorm die bij je past.

Kies op welke manier jij of je team graag een training wilt volgen. Global Knowledge bied je verschillende trainingsmogelijkheden. Je kunt kiezen uit o.a. klassikaal, Virtueel Klassikaal (online), e-Learning en maatwerk. Met onze Blended oplossing kun je de verschillende trainingsvormen combineren.

OVERVIEW

In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azure data platform technologies. Students will begin by understanding the core compute and storage technologies that are used to build an analytical solution. They will then explore how to design an analytical serving layers and focus on data engineering considerations for working with source files. The students will learn how to interactively explore data stored in files in a data lake.

They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics.

OBJECTIVES

  • Explore compute and storage options for data engineering workloads in Azure
  • Run interactive queries using serverless SQL pools
  • Perform data Exploration and Transformation in Azure Databricks
  • Explore, transform, and load data into the Data Warehouse using Apache Spark
  • Ingest and load Data into the Data Warehouse
  • Transform Data with Azure Data Factory or Azure Synapse Pipelines
  • Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines
  • Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link
  • Perform end-to-end security with Azure Synapse Analytics
  • Perform real-time Stream Processing with Stream Analytics
  • Create a Stream Processing Solution with Event Hubs and Azure Databricks

 

AUDIENCE

The primary audience for this course is data professionals, data architects, and business intelligence professionals who want to learn about data engineering and building analytical solutions using data platform technologies that exist on Microsoft Azure. The secondary audience for this course data analysts and data scientists who work with analytical solutions built on Microsoft Azure.

CERTIFICATION

This course helps to prepare for exam DP-203

CONTENT

Module 1: Explore compute and storage options for data engineering workloads

This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration.

  • Introduction to Azure Synapse Analytics
  • Describe Azure Databricks
  • Introduction to Azure Data Lake storage
  • Describe Delta Lake architecture
  • Work with data streams by using Azure Stream Analytics

Lab : Explore compute and storage options for data engineering workloads

  • Combine streaming and batch processing with a single pipeline
  • Organize the data lake into levels of file transformation
  • Index data lake storage for query and workload acceleration

After completing this module, students will be able to:

  • Describe Azure Synapse Analytics
  • Describe Azure Databricks
  • Describe Azure Data Lake storage
  • Describe Delta Lake architecture
  • Describe Azure Stream Analytics
Module 2: Run interactive queries using Azure Synapse Analytics serverless SQL pools

In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs).

  • Explore Azure Synapse serverless SQL pools capabilities
  • Query data in the lake using Azure Synapse serverless SQL pools
  • Create metadata objects in Azure Synapse serverless SQL pools
  • Secure data and manage users in Azure Synapse serverless SQL pools

Lab : Run interactive queries using serverless SQL pools

  • Query Parquet data with serverless SQL pools
  • Create external tables for Parquet and CSV files
  • Create views with serverless SQL pools
  • Secure access to data in a data lake when using serverless SQL pools
  • Configure data lake security using Role-Based Access Control (RBAC) and Access Control List

After completing this module, students will be able to:

  • Understand Azure Synapse serverless SQL pools capabilities
  • Query data in the lake using Azure Synapse serverless SQL pools
  • Create metadata objects in Azure Synapse serverless SQL pools
  • Secure data and manage users in Azure Synapse serverless SQL pools
Module 3: Data exploration and transformation in Azure Databricks

This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data.

  • Describe Azure Databricks
  • Read and write data in Azure Databricks
  • Work with DataFrames in Azure Databricks
  • Work with DataFrames advanced methods in Azure Databricks

Lab : Data Exploration and Transformation in Azure Databricks

  • Use DataFrames in Azure Databricks to explore and filter data
  • Cache a DataFrame for faster subsequent queries
  • Remove duplicate data
  • Manipulate date/time values
  • Remove and rename DataFrame columns
  • Aggregate data stored in a DataFrame

After completing this module, students will be able to:

  • Describe Azure Databricks
  • Read and write data in Azure Databricks
  • Work with DataFrames in Azure Databricks
  • Work with DataFrames advanced methods in Azure Databricks
Module 4: Explore, transform, and load data into the Data Warehouse using Apache Spark

This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool.

  • Understand big data engineering with Apache Spark in Azure Synapse Analytics
  • Ingest data with Apache Spark notebooks in Azure Synapse Analytics
  • Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics
  • Integrate SQL and Apache Spark pools in Azure Synapse Analytics

Lab : Explore, transform, and load data into the Data Warehouse using Apache Spark

  • Perform Data Exploration in Synapse Studio
  • Ingest data with Spark notebooks in Azure Synapse Analytics
  • Transform data with DataFrames in Spark pools in Azure Synapse Analytics
  • Integrate SQL and Spark pools in Azure Synapse Analytics

After completing this module, students will be able to:

  • Describe big data engineering with Apache Spark in Azure Synapse Analytics
  • Ingest data with Apache Spark notebooks in Azure Synapse Analytics
  • Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics
  • Integrate SQL and Apache Spark pools in Azure Synapse Analytics
Module 5: Ingest and load data into the data warehouse

This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion.

  • Use data loading best practices in Azure Synapse Analytics
  • Petabyte-scale ingestion with Azure Data Factory

Lab : Ingest and load Data into the Data Warehouse

  • Perform petabyte-scale ingestion with Azure Synapse Pipelines
  • Import data with PolyBase and COPY using T-SQL
  • Use data loading best practices in Azure Synapse Analytics

After completing this module, students will be able to:

  • Use data loading best practices in Azure Synapse Analytics
  • Petabyte-scale ingestion with Azure Data Factory
Module 6: Transform data with Azure Data Factory or Azure Synapse Pipelines

This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks.

  • Data integration with Azure Data Factory or Azure Synapse Pipelines
  • Code-free transformation at scale with Azure Data Factory or Azure Synapse Pipelines

Lab : Transform Data with Azure Data Factory or Azure Synapse Pipelines

  • Execute code-free transformations at scale with Azure Synapse Pipelines
  • Create data pipeline to import poorly formatted CSV files
  • Create Mapping Data Flows

After completing this module, students will be able to:

  • Perform data integration with Azure Data Factory
  • Perform code-free transformation at scale with Azure Data Factory
Module 7: Orchestrate data movement and transformation in Azure Synapse Pipelines

In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines.

  • Orchestrate data movement and transformation in Azure Data Factory

Lab : Orchestrate data movement and transformation in Azure Synapse Pipelines

  • Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines

After completing this module, students will be able to:

  • Orchestrate data movement and transformation in Azure Synapse Pipelines
Module 8: End-to-end security with Azure Synapse Analytics

In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools.

  • Secure a data warehouse in Azure Synapse Analytics
  • Configure and manage secrets in Azure Key Vault
  • Implement compliance controls for sensitive data

Lab : End-to-end security with Azure Synapse Analytics

  • Secure Azure Synapse Analytics supporting infrastructure
  • Secure the Azure Synapse Analytics workspace and managed services
  • Secure Azure Synapse Analytics workspace data

After completing this module, students will be able to:

  • Secure a data warehouse in Azure Synapse Analytics
  • Configure and manage secrets in Azure Key Vault
  • Implement compliance controls for sensitive data
Module 9: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link

In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless.

  • Design hybrid transactional and analytical processing using Azure Synapse Analytics
  • Configure Azure Synapse Link with Azure Cosmos DB
  • Query Azure Cosmos DB with Apache Spark pools
  • Query Azure Cosmos DB with serverless SQL pools

Lab : Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link

  • Configure Azure Synapse Link with Azure Cosmos DB
  • Query Azure Cosmos DB with Apache Spark for Synapse Analytics
  • Query Azure Cosmos DB with serverless SQL pool for Azure Synapse Analytics

After completing this module, students will be able to:

  • Design hybrid transactional and analytical processing using Azure Synapse Analytics
  • Configure Azure Synapse Link with Azure Cosmos DB
  • Query Azure Cosmos DB with Apache Spark for Azure Synapse Analytics
  • Query Azure Cosmos DB with SQL serverless for Azure Synapse Analytics
Module 10: Real-time Stream Processing with Stream Analytics

In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput.

  • Enable reliable messaging for Big Data applications using Azure Event Hubs
  • Work with data streams by using Azure Stream Analytics
  • Ingest data streams with Azure Stream Analytics

Lab : Real-time Stream Processing with Stream Analytics

  • Use Stream Analytics to process real-time data from Event Hubs
  • Use Stream Analytics windowing functions to build aggregates and output to Synapse Analytics
  • Scale the Azure Stream Analytics job to increase throughput through partitioning
  • Repartition the stream input to optimize parallelization

After completing this module, students will be able to:

  • Enable reliable messaging for Big Data applications using Azure Event Hubs
  • Work with data streams by using Azure Stream Analytics
  • Ingest data streams with Azure Stream Analytics
Module 11: Create a Stream Processing Solution with Event Hubs and Azure Databricks

In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams.

  • Process streaming data with Azure Databricks structured streaming

Lab : Create a Stream Processing Solution with Event Hubs and Azure Databricks

  • Explore key features and uses of Structured Streaming
  • Stream data from a file and write it out to a distributed file system
  • Use sliding windows to aggregate over chunks of data rather than all data
  • Apply watermarking to remove stale data
  • Connect to Event Hubs read and write streams

After completing this module, students will be able to:

  • Process streaming data with Azure Databricks structured streaming

Werden Sie über neue Bewertungen benachrichtigt

Es wurden noch keine Bewertungen geschrieben.

Schreiben Sie eine Bewertung

Haben Sie Erfahrung mit diesem Kurs? Schreiben Sie jetzt eine Bewertung und helfen Sie Anderen dabei die richtige Weiterbildung zu wählen. Als Dankeschön spenden wir € 1,00 an Stiftung Edukans.

Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!

Bitte füllen Sie das Formular so vollständig wie möglich aus

(optional)
(optional)
(optional)
(optional)
(optional)
(optional)

Haben Sie noch Fragen?

(optional)

Anmeldung für Newsletter

Damit Ihnen per E-Mail oder Telefon weitergeholfen werden kann, speichern wir Ihre Daten.
Mehr Informationen dazu finden Sie in unseren Datenschutzbestimmungen.