Multivariate Datenanalyse mit R - Basistraining (3tägig)

Dauer

Multivariate Datenanalyse mit R - Basistraining (3tägig)

DHL Data Science Seminare GmbH
Logo von DHL Data Science Seminare GmbH

Tipp: Haben Sie Fragen? Für weitere Details einfach auf "Kostenlose Informationen" klicken.

Startdaten und Startorte

Es gibt keine bekannten Startdaten für dieses Produkt.

DHL Data Science Seminare GmbH bietet seine Kurse in den folgenden Regionen an: Berlin, Frankfurt am Main, Hamburg, Köln, München, Stuttgart

Beschreibung

Der R Kurs Multivariate Datenanalyse mit R führt in die multivariate Statistik ein. Die Anwendung der multivariaten Verfahren mit der statistischen Programmiersprache R unter der Entwicklungsoberfläche RStudio wird mit vielen Beispielen und Übungsaufgaben trainiert und vertieft. Das Ziel der R Schulung ist es, multivariate Verfahren mit R unter RStudio anwenden zu können.

Was sind multivariate Verfahren?
Die Multivariate Datenanalyse untersucht den Einfluss von mehreren statistischen Variablen zugleich. Zusammenhangsstrukturen zwischen den Variablen können nur mit den multivariaten Verfahren der multivariaten Statistik erkannt werden. Damit sind diese den univariaten Verfahren überlegen, bei…

Gesamte Beschreibung lesen

Frequently asked questions

Es wurden noch keine Besucherfragen gestellt. Wenn Sie weitere Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice.

Noch nicht den perfekten Kurs gefunden? Verwandte Themen: R Programmiersprache, Datenanalyse, App Programmierung, Angular und Git & Github.

Der R Kurs Multivariate Datenanalyse mit R führt in die multivariate Statistik ein. Die Anwendung der multivariaten Verfahren mit der statistischen Programmiersprache R unter der Entwicklungsoberfläche RStudio wird mit vielen Beispielen und Übungsaufgaben trainiert und vertieft. Das Ziel der R Schulung ist es, multivariate Verfahren mit R unter RStudio anwenden zu können.

Was sind multivariate Verfahren?
Die Multivariate Datenanalyse untersucht den Einfluss von mehreren statistischen Variablen zugleich. Zusammenhangsstrukturen zwischen den Variablen können nur mit den multivariaten Verfahren der multivariaten Statistik erkannt werden. Damit sind diese den univariaten Verfahren überlegen, bei denen der Einfluss jeder Variablen auf die Messgröße einzeln analysiert wird. Die univariaten Verfahren werden in dem R-Kurs Grundlagen der Statistik mit R vermittelt.

Multivariate Verfahren wollen im Wesentlichen die in einem Datensatz enthaltene Zahl der Variablen reduzieren, im Ergebnis aber die Gesamtheit der enthaltenen Information berücksichtigen. Dazu wird die Struktur der Daten analysiert. Entweder gibt man im Rahmen der induktiven Statistik eine Struktur vor und prüft mit Hilfe strukturprüfender Verfahren, ob die Daten mit der vorgegebenen Struktur zusammenpassen, oder man versucht im Rahmen der explorativen Statistik, die Struktur zu entdecken und aus den Daten zu extrahieren.

Beide Verfahrensarten der multivariaten Statistik ergänzen sich häufig. So werden beispielsweise mit Hilfe der Clusteranalyse verschiedene, voneinander abgrenzbare Kundengruppen bestimmt. Mittels einer nachgeschalteten Diskriminanzanalyse können dann die Merkmale analysiert werden, mit denen die gefundenen Gruppen sich voneinander unterscheiden lassen. Mit den gewonnenen Erkenntnissen kann bei neuen Fällen die Gruppenzugehörigkeit prognostiziert werden. Oder eine Vielzahl von zu analysierenden Variablen werden zunächst mit Hilfe einer Faktorenanalyse auf wenige Faktoren reduziert. Anschließend werden die auf diese Weise ermittelten Faktoren mit Regressions-, Varianz- oder Zeitreihenanalysen untersucht.

Multivariate Verfahren werden erfolgreich in den verschiedensten Feldern eingesetzt wie beispielsweise in den betriebswirtschaftlichen Anwendungsbereichen (Marktforschung und Marketing), in der Technik (Produktentwicklung und Produktion) und in den wissenschaftlichen Anwendungsbereichen (z. B. Medizin, Pharmazie, Biowissenschaften, Psychologie, Pädagogik, Soziologie).

Inhalte der R Schulung
In den ersten drei Tagen (Basiskurs) vom R Kurs Multivariate Datenanalyse mit R werden die regressionsanalytischen Verfahren behandelt, die aufeinander aufbauen. Dazu gehören die multiple Regressionsanalyse, die die linearen und nichtlinearen Zusammenhänge zwischen mehreren Variablen quantitativ beschreibt und erklärt und Prognosen erlaubt, die logistische Regression, die zur Klassifizierung und Risikoabschätzung von Einzelfällen geeignet ist und die Zeitreihenanalyse, die Zeitreihen mittels verschiedener regressionsanalytischer Verfahren (Zeitregression, exponentielle Prognosemodelle, ARIMA-Modelle, LOESS-Dekomposition) in mehrere Komponenten zerlegt und Prognosen für zukünftige Entwicklungen erlaubt (prediktive Analyse/Forecasting).

In den letzten beiden Tagen (Aufbaukurs) vom R Kurs Multivariate Datenanalyse mit R werden strukturentdeckende Verfahren behandelt, die der Entdeckung von Zusammenhängen zwischen Variablen dienen. Dazu gehören die Clusteranalyse, die eine Vielzahl von Fällen zu wenigen Gruppen (Cluster) bündelt, und die explorative Faktorenanalyse, die eine Vielzahl von Variablen zu wenigen Dimensionen (Faktoren) reduziert. Als Ergänzung zur Clusteranalyse wird die Diskriminanzanalyse besprochen, mit der analysiert werden kann, mit welchen Variablen die in der Clusteranalyse gefunden Gruppen am besten beschrieben werden können. Als Ergänzung zur Faktorenanalyse wird die Reliabilitätsanalyse behandelt, die die Eignung und Reliabilität eines Itemsets für einen Faktor prüft. Es wird insbesondere gezeigt, wie mit Hilfe der Faktoren- und Reliabilitätanalyse die Güte eines Fragebogens zur Messung latenter Dimensionen überprüft werden kann.

Die Varianzanalyse ist Schwerpunktthema im Aufbaukurs des Grundlagenseminars.

Zielgruppe der R Schulung
Der R Kurs richtet sich an Anwender, Fachkräfte, Doktoranden und Studierende aus den Bereichen der Sozial- und Marktforschung, der Betriebswirtschaft (Marketing, Business Intelligence) und der psychologischen, klinischen, pharmazeutischen und biologischen Forschung, die mit den fortgeschrittenen Verfahren der multivariaten Statistik mehr aus ihren Daten herausholen wollen.

Voraussetzungen für den R Kurs
Erfahrungen mit R unter Verwendung von RStudio und die Inhalte des Seminars Grundlagen der Statistik mit R (Interpretation von Korrelationskoeffizienten wie Pearsons r und Signifikanztests wie dem t-Test sollten bekannt sein). Grundlegende Fertigkeiten im Umgang mit R/RStudio – wie Datenimport, Datenaufbereitung, Grafikerstellung und statistische Standardverfahren – werden vorausgesetzt, ständig angewendet und vertieft. Wenn der Umgang mit R/RStudio nicht vertraut sein sollte, empfiehlt es sich, vorher ein R/RStudio-Training mit den Grundlagen oder ein vergleichbares Seminar zu besuchen, um R und RStudio zu lernen.

Lernziele der R Schulung
fortgeschrittene Funktionen von R kennen lernen, Daten von Studien bzw. betrieblichen Prozessen erheben und mit Hilfe der multivariaten Statistik auswerten können, Ergebnisse von multivariaten Verfahren grafisch darstellen, erläutern und interpretieren können, aufgrund einer Fragestellung das geeignete multivariate Verfahren identifizieren und anwenden können

Übungen im R Kurs
Es wird Wert auf den Anwendungsbezug gelegt, die Praxisbeispiele und Übungsaufgaben erfolgen in der R Schulung mit der statistischen Programmiersprache R und der Entwicklungsumgebung RStudio.

Dauer der R Schulung
Der R Kurs Multivariate Datenanalyse mit R besteht aus einem

  • 3-tägigen Basis-Training Multivariate Datenanalyse mit R und einem anschließenden
  • 2-tägigen Aufbau-Training Multivariate Datenanalyse mit R, die auch zusammen als
  • 5-tägiges Komplett-Training gebucht werden können, bei der Sie 100 Euro gegenüber den Einzelbuchungen sparen.

Jede der drei Schulungen kann auch als Inhouse-Schulung in Ihrer Organisation stattfinden.

Inhalte Basis-Training

  • Multiple Regressionsanalyse
    Regressionsmodelle für kontinuierliche und kategoriale Variablen mit Suppressionseffekten (Suppressoranalyse), Moderationseffekten (Moderatoranalyse), nicht-linearen Effekten (polynomiale Regression) und Interaktionseffekten zwischen kategorialen und kontinuierlichen Variablen (dummykodierte Regressionsanalyse); automatisierte Verfahren zur Auswahl von Prognosevariablen und der Ermittlung des am besten an die Daten angepassten Modells; Residualdiagnostik und Prüfung der Modellprämissen (Angemessenheit, Linearität, Multikollinearität, Homoskedastizität und Normalverteilung der Residuen, Behandlung von Ausreißern, Extremwerten und einflussreichen Beobachtungen)
  • Logistische Regression
    Schätzung der logistischen Regressionsfunktion, Interpretation der Koeffizienten (Logits, Odds und Wahrscheinlichkeiten), Berechnung von Odds Ratio und relatives Risiko, Konfusionstabellen mit Trefferquote, Spezifität und Sensitivität, ROC-Kurven und automatisierte Verfahren zur Ermittlung des optimalen Trennwerts, automatisierte Auswahl von Prognosevariablen, Prüfung des Gesamtmodells und der Merkmalsvariablen (AUC, Likelihood-Ratio-Test und Pseudo R-Quadrat-Statistiken)
  • Zeitreihenanalyse
    Zeitregression mit linearen und nichtlinearen Trend-, Konjunktur- und Saison-Komponenten und unter Berücksichtigung von Strukturbrüchen; Glättungsmethoden und LOESS-Dekomposition von Trend- und Saison-Komponenten; exponentielle Prognosemodelle und ARIMA-Modelle (prediktive Analyse); Erstellung von kurz- und langfristigen Prognosen; grafische Darstellung von Zeitreihen mit Prognose und Prognoseintervallen

Vorausetzungen

  • die Inhalte des Seminars Grundlagen der Statistik mit R (Interpretation von Korrelationskoeffizienten wie Pearsons r und Signifikanztests wie dem t-Test sollten bekannt sein)
  • Grundlegende Fertigkeiten im Umgang mit R und RStudio werden vorausgesetzt, ständig angewendet und vertieft.
  • Wenn der Umgang mit R/RStudio nicht vertraut sein sollte, empfiehlt es sich, vorher ein R/RStudio-Training mit den Grundlagen oder ein vergleichbares Seminar zu besuchen.

Statistik-Seminare in Berlin, Hamburg, Köln, Frankfurt, Stuttgart und München... immer aktuell und auf dem höchsten Qualitätsniveau!

Werden Sie über neue Bewertungen benachrichtigt

Es wurden noch keine Bewertungen geschrieben.

Schreiben Sie eine Bewertung

Haben Sie Erfahrung mit diesem Kurs? Schreiben Sie jetzt eine Bewertung und helfen Sie Anderen dabei die richtige Weiterbildung zu wählen. Als Dankeschön spenden wir € 1,00 an Stiftung Edukans.

Es wurden noch keine Besucherfragen gestellt. Wenn Sie weitere Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice.

Bitte füllen Sie das Formular so vollständig wie möglich aus

Anrede
(optional)
(optional)
(optional)
(optional)
(optional)
(optional)
(optional)

Haben Sie noch Fragen?

(optional)
Damit Ihnen per E-Mail oder Telefon weitergeholfen werden kann, speichern wir Ihre Daten.
Mehr Informationen dazu finden Sie in unseren Datenschutzbestimmungen.